
NAVAL POSTGRADUATE SCHOOL
Monterey, California

cvi

THESIS

FEATURE-BASED LOCALIZATION IN SONAR-
EQUIPPED AUTONOMOUS MOBILE ROBOTS

THROUGH HOUGH TRANSFORM AND
UNSUPERVISED LEARNING NETWORK

by

Jonathan Scott Glennon

June, 1998

Thesis Advisor: Xiaoping Yun

Approved for public release; distribution is unlimited.

DTIC QUALITY lÄßPECTSD 1

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC

20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1998.

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE FEATURE-BASED LOCALIZATION IN
SONAR-EQUIPPED AUTONOMOUS MOBILE ROBOTS
THROUGH HOUGH TRANSFORM AND UNSUPERVISED
LEARNING NETWORK

6. AUTHOR(S) Jonathan Scott Glennon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

5. FUNDING NUMBERS

PERFORMING
ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

As we approach the new millennium, robots are playing an increasingly important role in our everyday
lives. Robotics has evolved in industrial and military applications, and unmanned space exploration promises
the continued development of ever-more-complex robots. Over the past few decades, research has focused on
the development of autonomous mobile robots - robots that can move about without human supervision. This
brings with it several problems, however, specifically the problem of localization. How can the robot
determine its own position and orientation relative to the environment around it?

Various methods of localization in mobile robots have been explored. Most of these methods,
however, assume some a priori knowledge of the environment, or that the robot will have access to navigation
beacons or Global Positioning Satellites. In this thesis, the foundations for feature-based localization are
explored. An algorithm involving the Hough transform of range data and a neural network is developed, which
enables the robot to find an unspecified number of wall-like features in its vicinity and determine the range and
orientation of these walls relative to itself. Computation times are shown to be quite reasonable, and the
algorithm is applied in both simulated and real-world indoor environments.

14. SUBJECT TERMS Autonomous mobile robots, Hough transform, localization,
Nomad Scout mobile robot, competitive neural networks, data clustering.

15. NUMBER OF
PAGES 109

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

DTIC QUALITY INSPECTED 1

11

Approved for public release; distribution is unlimited.

FEATURE-BASED LOCALIZATION IN SONAR-EQUIPPED
AUTONOMOUS MOBILE ROBOTS THROUGH HOUGH TRANSFORM

AND UNSUPERVISED LEARNING NETWORK

Jonathan Scott Glennon

Captain, United States Marine Corps

B. S., United States Naval Academy, 1990

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE
IN

ELECTRICAL ENGINEERING

from the

Author:

NAVAL POSTGRADUATE SCHOOL
June, 1998

&
/ Jonathan Scott Glennon

Approved by: i^ .^/s.^ 1
Xiaoping Yun, Thesis Advisor

Robert G. Hutchins, Second Reader

Herschel JwLoomis, Jr., Chairman

Department of Electrical and Computer Engineering

in

IV

ABSTRACT

As we approach the new millennium, robots are playing an increasingly important

role in our everyday lives. Robotics has evolved in industrial and military applications,

and unmanned space exploration promises the continued development of ever-more-

complex robots. Over the past few decades, research has focused on the development of

autonomous mobile robots - robots that can move about without human supervision.

This brings with it several problems, however, specifically the problem of localization.

How can the robot determine its own position and orientation relative to the environment

around it?

Various methods of localization in mobile robots have been explored. Most of

these methods, however, assume some a priori knowledge of the environment, or that the

robot will have access to navigation beacons or Global Positioning Satellites. In this

thesis, the foundations for feature-based localization are explored. An algorithm

involving the Hough transform of range data and a neural network is developed, which

enables the robot to find an unspecified number of wall-like features in its vicinity and

determine the range and orientation of these walls relative to itself. Computation times

are shown to be quite reasonable, and the algorithm is applied in both simulated and real-

world indoor environments.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. THE LOCALIZATION ISSUE 2
B.GOALS OF THE THESIS 4
C. THESIS OUTLINE 5

H. SYSTEM OVERVIEW 7
A. SYSTEM OVERVIEW: NOMAD SCOUT ™ 7

1. Mechanical Description 8
2. Odometry 9
3. The Sensus 200 ™ Sonar Ranging System 9

B. COMPUTER AND SOFTWARE 10
C. CHAPTER SUMMARY 10

m. PROBLEM STATEMENT AND PROPOSED APPROACH 11
A. PROBLEM DEFINITION 11
B. LITERATURE SURVEY 14
C. PROPOSED APPROACH 15
D. CHAPTER SUMMARY 17

IV. THE HOUGH TRANSFORM 19
A. FUNDAMENTAL PARAMETRIC REPRESENTATION 19
B. POINT-CURVE TRANSFORMATION 20
C. HOUGH TRANSFORM TECHNIQUES 22

1. Resolution Grids: The Duda and Hart Technique 22
2. Explicitly Solving for Intersections 24

D. CHAPTER SUMMARY 26

V. NEURAL DATA CLUSTERING 27
A. "WINNER-TAKE-ALL" COMPETITIVE NETWORKS 27
B. NORMALIZATION PROCEDURE 29
C. ADDING A CONTROL MECHANISM TO THE NETWORK 31
D. DATA CLUSTERING USING THE CUSTOMIZED NETWORK 32
E. CHAPTER SUMMARY 35

VI. IMPLEMENTATION 37
A. CONVERTING SONAR DATA TO X-Y COORDINATES 38
B. REDUCED HOUGH TRANSFORM OF SONAR RETURNS 41
C. FINDING CLUSTERS IN THE HOUGH DOMAIN 44
D. CHAPTER SUMMARY ! 45

VH. EXPERIMENTAL RESULTS 47
A. SIMPLE TESTS 47

vii

1. A Simulated Comer 48
2. A Case In Which Walls Are Not Orthogonal 51

B. SIMULATED ROBOT TESTING 53
1. Corner of a Virtual Room 55
2. A Corridor 57
3. Walls Which Are Not Orthogonal 59
4. Short Walls: A Partial Failure 60
5. Near A Doorway: Total Failure 62

C. PROCESSING REAL WORLD SONAR DATA 62
1. Tuning Algorithm Parameters To Deal With Noise 63
2. Real World Corner in a Cluttered Room 64
3. Real World Corridor in a Cluttered Room 67

D. CHAPTER SUMMARY 69

vm. DISCUSSION 71
A. IMPLICATIONS 71
B. FUTURE WORK 71

APPENDIX A. HOUGHRED.M 77

APPENDDCB.NNCLUST.M 81

APPENDDC C. FTNDWALL.M 87

APPENDDC D. GATHER.C 87

REFERENCES 89

INITIAL DISTRIBUTION LIST 93

vm

LIST OF FIGURES

1. Nomad Scout II 8
2. Dead reckoning error 12
3. Parameters used to describe a wall 14
4. Cartesian representation of world coordinate system 16
5. Point - Line transformations 20
6. Normal parameterization of a line 21
7. Point - Curve transformations 21
8. Kohonen, or 'winner-take-all' network 28
9. Test vectors for neural network clustering 32
10. Initial placement of random weights 33
11. Results of neural network clustering 34
12. Overall wall finding algorithm 37
13. Angular relationship of transducers 40
14. Cartesian data are sorted counter-clockwise 41
15. Test points in the Cartesian domain 43
16. Test points transformed to curves in the Hough domain 43
17. Test points transformed to clusters in the reduced Hough domain 44
18. Results of network clustering in the reduced Hough domain 45
19. Simple test # 1: A simulated corner 48
20. Simple test # 1: Robot's view of the world49
21. Simple test # 1: Hough domain representation 50
22. Simple test # 1: Simulated sonar returns and detected walls 51
23. Simple test # 2: Non-orthogonal walls 52
24. Simple test # 2: Simulated sonar returns and detected walls 53
25. Virtual environment used for simulations 54
26. Simulation # 1: Problem setup 55
27. Simulation # 1: Sonar returns and detected walls 56
28. Simulation # 2: Problem setup 57
29. Simulation # 2: Sonar returns and detected walls 58
30. Simulation # 3: Problem setup 59
31. Simulation # 3: Sonar returns and detected walls 60
32. Simulation # 4: Problem setup 61
33. Simulation # 4: Sonar returns and detected walls 61
34. Simulation # 5: Problem setup 62
35. Hough domain representaion of sonar returns gathered in a real world corner 64
36. Sonar returns and detected walls in a real world corner 66
37. Sonar returns and detected walls in a real world corridor 68

IX

LIST OF TABLES

1. Steps for Duda and Hart technique 23
2. Steps for normalization of data vectors 31
3. Exemplar vectors chosen by neural network 34
4. Data format of range findings 38
5. Simple test # 1: Exemplar vectors 49
6. Simple test # 2: Exemplar vectors 52
7. Simulation # 1: Exemplar vectors 56
8. Simulation # 2: Exemplar vectors 57
9. Simulation # 3: Exemplar vectors 59
10. Simulation # 4: Exemplar vectors 61
11. Recommended parameters in algorithm 63
12. Summary of algorithm output for sonar input gathered in real world corner 65
13. Summary of algorithm output for sonar input gathered in real world corridor 68

XI

Xll

ACKNOWLEDGEMENTS

This research was only possible due to the efforts and sacrifices of many people.

An enormous debt of gratitude is owed to my advisor, Dr. Xiaoping Yun, for his advice,

guidance, leadership, and inspiration. Also to my second reader, Dr. R. Gary Hutchins,

for his wisdom and counsel. Both have made the conduct of the research and the writing

of this document a thoroughly rewarding and enjoyable learning experience.

Many thanks to the faculty and staff of the Electrical and Computer Engineering

Department at the Naval Postgraduate School who, through their patience and example,

have given me the benefit of their wisdom and experience. In particular, Dr. Monique

Fargues was a very helpful source of information regarding neural networks. Thanks also

to the staff of the Dudley Knox Library.

Thanks go out to the United States Marine Corps, who saw fit to send me to the

Naval Postgraduate School, and to the taxpayers who bore the financial burden for my

education. Appreciation goes to the wonderfully creative people at Nomadic

Technologies in Mountain View, California; and also to the makers of MATLAB.

Finally, and most importantly, I would like to thank my wife, Monika, and our

children, Jackie and R. J. They have endured the countless hours I have had to spend

away from them without a single complaint. This effort would not have been possible

without their infinite love, support, and patience.

Xlll

XIV

I. INTRODUCTION

Twelve years ago, the number four reactor at Chernobyl became unstable, and the

worst nuclear accident in history became a reality. The concrete encasement built around

the facility is beginning to show signs of structural failure, yet the site is still so

radioactive that people cannot work inside. But "Pioneer," a thousand-pound robot

designed by RedZone, was designed to enter the hazardous area, and take readings and

images to help scientists assess the load bearing performance of the walls. [Refs. 1, 2]

This scenario demonstrates one of the reasons that robots have begun to appear in

almost every facet of our lives, often emerging as a popular alternative to human labor.

Robots are able to enter hazardous areas and perform tasks in environments where

humans would be placed in unacceptable danger. If the robot becomes a casualty, only a

financial loss is suffered. This makes them ideally suited to enter areas like Chernobyl,

and other environments as well. For 80 days, "Sojourner" was able to send information

to NASA about the surface of the planet Mars. It would have been difficult to sustain a

human exploration team for this length of time in a radiation environment where

temperatures range from -13.3 to 54.4 degrees Celsius [Ref. 3]. The risks of such a

mission would have been extraordinary. NASA was able to use robots on this primary

exploration, thereby reducing risk for a planned human exploration in the future.

Clearly, the inherent suitability of robots in hazardous environments offers many

potential military applications for mobile robots. Some potential military applications

have recently been explored at the Naval Postgraduate School, including a navigation

system for an outdoor robot [Ref. 4], and battlefield surveillance [Ref. 5]. Applications

involving the cooperation of multiple robots are also being explored [Refs. 5, 6]. A

rugged platform has been used in development for possible applications in searching for

mines and unexploded ordnance [Ref. 7]. The Defense Advanced Research Projects

Agency (DARPA) supports research in distributed robotics for military applications [Ref.

8].

In addition to reducing risk to human life, robots offer other advantages. The

human mind has a limited attention span. Humans are prone to boredom and fatigue.

Robots are immune to boredom and fatigue (as long as power supplies are maintained).

Thus, robots are better suited than humans to perform repetitive or tedious tasks.

Searching an area is a prime example. The accuracy of the search inherently depends on

the searcher's level of concentration, but concentration will degrade as a human searcher

becomes fatigued and bored. A robot can perform the same task with uniform accuracy,

and can continue the search for days or weeks without taking a break. Robots are also

ideally suited for tasks such as sentry duty or security patrols, since these tasks involve

alertness during a repetitive behavior.

Given the proper array of sensors, the potential applications for robots is

boundless. But clearly the need is greatest for intelligent, mobile machines; especially

those which can work in concert and adapt to dynamic environments. But sensors alone

do not enable a robot to react to its environment. The information from these sensors

must be processed in clever ways. Some degree of on-board intelligence is crucial to this

processing.

Some robots are hard-mounted, while others have mobility. For those which have

mobility, it becomes a challenge to enable the robot to move about unsupervised and

unassisted. Such robots are often called autonomous mobile robots. Controlling the

robot's movement with a joystick or other interface is common practice today, but this

does not represent the ideal solution. It would be better if the robot could autonomously

navigate itself. But this brings several issues with it, not the least of which is localization.

A. THE LOCALIZATION ISSUE

One very important issue associated with the operation of an autonomous mobile

robot is localization. Specifically, localization is the process of defining the real-time

position and orientation of the robot with respect to a given coordinate system. Usually,

this coordinate system is some representation of the real world. Localization is

important; the robot must know where it is in order to navigate to a new location. The

robot must have a point of reference if it is to explore an area.

When operating in outdoor environments (on earth),the availability of Global

Positioning Satellites (GPS) makes the localization problem a relatively simple one to

solve, but by no means is GPS a universal solution. A robot that operates in an indoor

environment is often unable to receive GPS signals. Even certain outdoor environments

near buildings or dense vegetation may leave the robot without simultaneous connections

to four satellites. If the robot is to complete its task outside of Earth's atmosphere (the

surface of Mars, for example), GPS offers no assistance whatsoever. Even in applications

where GPS is available, the accuracy of the commercially available signal may not be

sufficient for some applications.

Dead reckoning is probably the simplest and most common method of self-

localization in mobile robots. Generally, some type of odometer is used to count wheel

rotations or measure distance traveled or velocity. Given the initial placement, and

velocity as a function of time, the robot computes its present location by integrating its

velocity function. The nature of integration, however, implies that imperfections in the

odometry readings will accumulate over time. Thus, the longer a robot moves about in a

particular environment, the less accurate its localization will be. This is the prime

disadvantage of dead reckoning. In the case of wheeled robots, wheel slippage is a

common cause of dead reckoning errors. Dead reckoning is not a viable means of

localization for long term mobility, unless some means exists to check for and correct

cumulative errors.

Beacon tracking is another way to enable localization, and early work at the Naval

Postgraduate School focused on beacon tracking robots [Ref. 9, page 14]. A number of

beacons are placed somewhere in the robot's vicinity at known locations. The beacons

transmit signals, which are received and then interpreted by the robot. Either through

triangularization or some other method, the robot determines its position relative to these

known locations. This method becomes unfeasible if the environment cannot be

equipped with beacons. The surface of Mars, or a battlefield, for example, cannot be

equipped with navigation beacons prior to the deployment of the robot.

To enable an autonomous mobile robot to operate in a given environment over an

extended period of time, without assuming the availability of GPS satellites or navigation

beacons, it is clearly necessary to correct the dead-reckoning errors that accumulate over

time. One general approach to correcting dead-reckoning errors is to provide the robot

with the ability to recognize physical features or landmarks in its environment as it moves

about, and to calibrate itself with respect to these features when it arrives at the

previously traveled area again. This method is commonly referred to as feature-based

localization, and it is very similar to the method that humans use.

This thesis explores the foundations for such a method. I have chosen to limit the

investigation to the very specific (and simple) case of an autonomous mobile robot

equipped with time-of-flight sonar range sensors, restricted to an indoor environment.

The features that the robot learns to recognize will be walls. It is my hope that if the

foundations can be established in this simplified case, they can later be modified and

applied to more complex scenarios.

B. GOALS OF THE THESIS

In this thesis, an algorithm is to be developed which enables a robot to recognize

an undetermined number of wall-like features in its environment. The algorithm will

determine the number of walls, as well as the range to and orientation of these walls

relative to the robot.

The objective is to develop an algorithm which allows the robot to automatically

determine the range to and orientation of any suitable walls, without a priori knowledge

of the environment. The algorithm must be tested and shown to perform reasonably well

in real indoor environments.

It should be noted that this thesis is intended to demonstrate the concept of

feature-based localization. To facilitate the concept demonstration, data are processed

off-line. In practice, the same algorithm should be run in the high-level control of the

robot itself. Running the algorithm on the robot would prevent close analysis of the

performance of the algorithm, however, so this step is left for future research.

C. THESIS OUTLINE

The remainder of this thesis deals with the introduction and investigation of an

algorithm for finding an undetermined number of walls in an autonomous mobile robot's

environment. Some background information on the robotic system used for testing is

clearly necessary, as well as some information on the Hough transform and competitive

neural networks.

Chapter II gives a system overview of the mobile robot used in this experiment;

the NOMAD SCOUT. This robot is a product of Nomadic Technologies, Inc.

In Chapter HI the problem is presented in more detail. Related projects are

discussed in the literature survey. A solution involving the Hough transform and a

competitive neural network is proposed.

Since the reader may not be familiar with the Hough transform, an introduction is

provided in Chapter IV. The grid-based approach to extracting data from the Hough

domain is discussed. The key elements of the Hough domain are pointed out, and solved

for explicitly.

An introduction to competitive neural networks is provided in Chapter V. The

Kohonen neural network is introduced, and several modifications are made to it. It is

shown how such a network may be applied to find an unspecified number of clusters in a

given pattern space. A demonstration of clustering in a two-dimensional pattern space is

provided, and the time required to conduct the clustering is shown to be adequate.

The specific implementation of the proposed approach is discussed in Chapter VI.

The implementation is discussed in several stages. The Hough transformation is

implemented in an unconventional manner, yielding clusters of points in the Hough

domain which represent groups of curve intersections. These clusters are then classified

by the network of Chapter V, and each cluster is represented by an exemplar vector.

These exemplar vectors are taken to be representations of the walls near the robot.

The results of the algorithm applied to both simulated and real-world sonar returns

are given in Chapter VE. Several scenarios are discussed in detail. The results show the

algorithm to perform adequately for the chosen application.

In Chapter Vm, the implications and potential applications of the proposed

algorithm are discussed. Additionally, potentials for future work are identified and

discussed.

The code used to implement the proposed algorithm is included in the appendices

to this document. Appendices A, B, and C are the implementation of the algorithm itself,

while appendix D is the code used to gather the sonar data.

II. SYSTEM OVERVIEW

Several groups are pursuing research relating to autonomous mobile robots at the

Naval Postgraduate School. The school has purchased a number of robots from a nearby

supplier to facilitate this research. Nomadic Technologies, Inc., located in Mountain

View, CA, is the producer of several models of autonomous mobile robots.

The school has purchased one NOMAD 200 ™ mobile robot, and four NOMAD

SCOUT ™ robots, with several more Scout robots planned for the near future. These

platforms are, for the most part, code-compatible [Ref. 10]. The algorithm outlined in

this thesis was tested in real conditions on the Scout platform. This Chapter is intended

to give the reader some familiarity with the platform, and provide a technical context for

comparisons.

Only those aspects of the platform which pertain to the thesis are explained in this

Chapter. A complete description of the Scout platform can be found in References [10

and 11].

Off-line processing of the range data gathered by the robot was conducted on a

computer, using MATLAB ™ version 4.2 (b), a software package by Mathworks, Inc. A

brief description of the computer platform and the software package is included to

provide further technical context for comparisons.

A. SYSTEM OVERVIEW: NOMAD SCOUT™

The Scout is an autonomous mobile robot system, equipped with a variety of

sensors. 16 independent ultrasonic time-of-flight sonar sensors are included in the

package for range-finding, effective over 6 to 255 inches. 16 independent tactile switches

are located about the circumference of the robot. An odometry sensor is included to

facilitate dead reckoning. The control system is hierarchical. The majority of the "low-

level" or "housekeeping" control functions, including the sensing and communications,

are performed by an on-board Motorola MC68332 multiprocessor. Motor control is

conducted by a TMS320C14 DSP chip. "High-level" controls can be administered either

by a laptop computer mounted on top of the robot, or a remote Linux or Unix workstation

connected to the robot via a radio modem. The Scout is powered by two 12 Volt, 17

Ampere Hour lead-acid batteries, which can power the robot for up to 20 hours of normal

operation when fully charged. [Refs. 10, 11].

Most applications conducted at the Naval Postgraduate School are administered

from a Unix workstation via a wireless modem. In this particular application, a Unix

workstation was connected to the robot via wireless modem only to gather range data

from the sonar sensors. The data was then saved in ASCII format, and subsequently

processed off-line. Hardware and software platforms used in this off-line processing are

described later in this chapter.

1. Mechanical Description

The newest version of the Scout is shown in Figure 1. Without its batteries, the

Scout weighs 23 kilograms. It is 34 centimeters tall, and 38 centimeters in diameter.

[Ref. 11]

Figure 1. Nomad Scout II (from Ref. [12])

The platform can travel with a maximum velocity of 1.0 meter per second, and

can accelerate at up to 2 meters per second squared. The ground clearance is 3.5

centimeters. The Scout is a 2 degree-of-freedom robot with 2 wheel differential drive at

the geometric center of the robot. [Refs. 10, 11]

2. Odometry

The Scout is able to keep a running, real-time integral of its current position in

world coordinates. It assumes its startup position to be the origin, unless the origin is

reset during operation. The x axis extends from the center of the robot to the forward

direction (the direction the robot is facing). The y axis extends from the center of the

robot to the robot's left. The robot also tracks its orientation, given relative to the x axis,

such that counter-clockwise is a positive angle.

The odometric encoder has finite resolution. The translational movements

(relative to the x and y axes) are measured by 167 counts per centimeter, and returned at

one tenth of an inch resolution. Orientation is measured with 45 counts per degree, and

returned with one tenth of a degree resolution. [Refs. 10,11]

3. The Sensus 200 ™ Sonar Ranging System

Sensus 200™ is the trademark name given to the time-of-flight sonar ranging

system installed on the Scout by its creators at Nomadic Technologies. It consists of 16

independent channels equally dispersed about the circumference of the robot. The

separation of the center axes of adjacent sonar channels is 22.5 degrees. The sensors used

are standard Polaroid transducers, driven by a Polaroid 6500 ranging board. Each

transducer has an independent beam width of 25 degrees, so there is some overlap. [Ref.

13]

The system is a time-of-flight ranging sensor, based on the return time of an

ultrasonic acoustic signal. At the initiation of each read cycle, each transducer

sequentially transmits a pulse at 49.4 kHz, and the time required for an echo to be

received is measured. The transducers have a tendency to ring after transmitting, so the

echo receivers must be blanked for a certain amount of time. This results in a minimum

distance of about 6 inches. If no echo return is detected, the next read cycle is initiated,

resulting in a maximum distance of 255 inches. [Ref. 13]

Under ideal operating conditions, the sensor array would be expected to return

accurate range findings over 6 to 255 inches, and do so with 1 percent accuracy over the

entire range [Ref. 10]. In practice, however, the performance of the time-of-flight sonar

operating alone is less reliable. This is due primarily to the non-ideal propagation

characteristics of acoustic signals. Echo returns tend to be accurate only when they are

reflected by a nearly orthogonal surface. Signals may be reflected by more than one

surface before returning to the echo receiver, resulting in a range finding that is higher

than the true value. The material construction of the reflective surface may also tend to

damp acoustic signals, giving (in the worst case) a maximum range finding when in fact

the surface is much closer. There are a number of ways to improve the reliability of the

range data, and some of these will be discussed in Chapter VIE.

B. COMPUTER AND SOFTWARE

As stated earlier, the range data were simply collected by the robot, and processed

off-line in order to demonstrate the concept of feature-based localization in a meaningful

way. The data were ported in ASCII format to a Gateway 2000 ™ P5-75 system. The

processor is a first generation Intel™ Pentium ™, with 75 MHz clock speed. 32

megabytes of random access memory are installed in the system. The operating system

used is Microsoft™ Windows 95 ™.

Data were processed using original programs written for the Mathworks software

program MATLAB™, version 4.2 (b). No other programs were running when data

analysis was conducted.

C. CHAPTER SUMMARY

In this chapter, a brief overview of the Nomad Scout robotic platform was

provided. A brief description of the platform used to process data off-line was also given.

The next chapter will introduce the problem of localization in further detail, and outline

the proposed approach.

10

III. PROBLEM STATEMENT AND PROPOSED APPROACH

This chapter begins by defining the problem to be solved. Next, related literature

is surveyed and summarized. Finally, the proposed solution to the problem is outlined,

and broken into steps. These steps are then further detailed in the following chapters.

A. PROBLEM DEFINITION

As stated in Chapter I, this thesis investigates the problem of feature-based

localization of an autonomous mobile robot. Localization is the process of ascertaining

the real time position and orientation of the robot relative to a world coordinate system.

Localization becomes an important issue, because a robot cannot possibly navigate or

explore in an environment without accurate localization.

Many researchers have studied the problem of localization, and literature is widely

available. Some of these methods assume the a priori availability of a world map. Others

use beacons in the environment that can be recognized by the appropriate sensors

installed on the robot, but this approach is not always feasible. Global Positioning

Satellites can be used in some situations, but not all.

Dead reckoning is a very common feature, found on many mobile robots. It is

insufficient, because odometric errors accumulate over time. Experience with mobile

robots at the Naval Postgraduate School shows that substantial errors can accumulate in

as little as 30 minutes, as shown in Figure 2. The figure shows the results of a Scout

robot used to map an indoor environment. The actual indoor environment is a laboratory

at the Naval Postgraduate School; in reality the walls should be nearly orthogonal or

parallel to one another. The odd corridor at the top of the map reflects odometric errors

which have accumulated in only 31 minutes. Clearly the need arises for some means to

identify and correct cumulative odometric errors.

11

—
^Btaap^|=s=;=^||^=l||||||l|l|ll|y^^j|™||l|||lll|ll|l||^=...=^=-.,^,

lii^foäfjll

:•m.,ftS«,,
■ ■laiiBitaiiD lä

tSGIl^^mj,
IKrjpi

'**

\
\

ÜÜiüüÜÜühftl

II*IBII«IIBIII

■^IHIIilliilllllllHIJJIiiliJilJilJJfiJl^
'ii:;z:i;!ii:;i{ii:ii{;;{i;i;ii;ii{;#

lea
PgftJ-1

*

iif l.;l59»I!;;l!i=!!II

Sislisiisiiifiisiisiislisiljiiislislisii^^
isiiiiiifiiEi:!!!!!!:!!!!!:!!!!:!;!!*'!*!!!!!*'!*'*'^

Figure 2. Dead reckoning error

If the robot could identify features in its environment, then it would be possible to

correct these cumulative errors. A robot could identify features near it at startup, before

any errors have occurred. Then, after it has moved about for a period of time, it would

return to this location and look once again for those features. If the features appear in a

slightly different location or orientation during this second sample, then the difference

must be due to cumulative dead reckoning error. The robot simply calibrates its x and y

position and orientation to compensate for the difference.

12

This is a difficult problem, and this thesis does not attempt to solve it in its

entirety. Rather, the problem is simplified with certain assumptions, in the expectation

that fundamental concepts explored herein can be extended to more complex scenarios.

First, we assume that the robot is indoors. Second, we assume that the features to be

recognized are nearly straight lines; in other words, walls. Finally, we assume that the

robot is equipped with some type of ranging sensor; in our case we are using an ultrasonic

sonar array. The specific platform used to gather range data and explore the concept of

feature-based localization is the Nomad Scout mobile robot described in Chapter II.

Armed with these assumptions, the next step is to define an achievable objective.

The intent is only to demonstrate the feasibility of the concept of feature-based

localization. Hence, the problem becomes one of enabling the robot to search for and

find an undetermined number of walls in its vicinity, and uniquely and accurately

determine the position and orientation of these walls relative to itself. This process must

be conducted without a priori knowledge of the environment, and the results must be

based entirely on the range data from the sonar array. If this can be done, we have

accomplished the goal of demonstrating a means for correcting cumulative dead

reckoning errors. We simply conduct the search twice; once at startup at which time any

nearby walls are identified and stored in memory. After the robot has moved about the

room and accumulated some dead reckoning error, we send the robot back to the dead

reckoning origin, facing in the direction of the dead reckoning x axis. The features

(walls) will appear in the second search with a slightly different position and orientation,

and the difference reflects the cumulative error due to dead reckoning. Corrections are

made to the robot's dead reckoning localization until the features appear in their original

position and orientation.

Finally, we note that any straight wall can be uniquely described from any point

near the wall using only two parameters, as shown in Figure 3. If this "point" is the

center of the robot, then the first parameter is the shortest distance to the wall; in other

words, the distance from the center of the robot to the wall along a line orthogonal to the

wall. The second parameter is the orientation of the wall; in other words, the counter-

clockwise angle from the forward direction of the robot to the orthogonal line.

13

Figure 3. Parameters used to describe a wall

B. LITERATURE SURVEY

In 1962, Hough developed a means for representing complex arrangements in the

Cartesian domain by parameters [Ref. 14]. In many cases, the complex arrangements

were transformed to much simpler arrangements. The parameters used were the

traditional polar axes, radius and counter-clockwise angle from the x axis. This

transformation by parameterization became known as the Hough transform.

Throughout the 1960s and 1970s, competitive neural networks were developed by

many researchers, including Stephen Grossberg, Cristoph von der Malsburg, and Tuevo

Kohonen, among others [Ref. 15]. In particular, Kohonen introduced a simplified version

of the INSTAR learning rule to be used with competitive networks. This simplified rule is

often referred to as the Kohonen learning rule [Refs.15, 16].

In 1972, Duda and Hart suggested a means for using the Hough transform to

detect lines in pictures [Ref. 17]. The paper has become a standard reference, not only for

researchers studying localization of sonar-equipped mobile robots, but also for those

studying robot vision and image processing. The method proposed by Duda and Hart for

extracting key information from the Hough domain is outlined in Chapter IV. Alternative

methods using neural networks inspired by Kohonen have since been presented [Ref. 18].

A team of researchers in Sweden have recently begun to experiment with the

Hough transform as a feature-recognition tool in a mobile robot [Refs. 19, 20,21]. In this

case, the Hough transform is modified slightly; range findings at certain values are

14

weighted more heavily than others. The "Range Weighted Hough Transform" (RWHT)

is applied inside the feedback loop of a mobile robot to assist in localization with

documented results.

Variations on the Hough transform have also been used to find shapes other than

straight lines. The methodology originally proposed by Duda and Hart has been modified

and used to detect curves using a Fourier parameterization [Ref. 22]. By combining the

Hough transform with a neural network, a complete shape recognition system has been

proposed [Ref. 23].

Previous work at the Naval Postgraduate School explored localization techniques

for a Nomad 200 mobile robot using the Hough transform of ultrasonic sonar range

findings [Ref. 24]. The proposed algorithm was successful in finding the longest wall

and determining the range and orientation of this wall. The method used for analysis of

the Hough domain was very similar to that proposed by Duda and Hart.

At the Naval Research Laboratory in Washington, D. C, a group of scientists

have been investigating the feasibility of simultaneous localization and exploration. In

general, it is necessary to have accurate localization in order to facilitate exploration. At

the same time, most methods of localization assume some a priori knowledge of the

environment. This apparent contradiction is elegantly addressed through the use of

evidence grids. The concept is to divide the environment into small grid squares, and

look for evidence that a particular square may or may not be occupied. [Refs. 25, 26]

The Hough transform has proven to be a very versatile tool, and has been put to

many other applications in recent years. A three dimensional imaging system using laser

generated ultra short x-ray pulses was developed in 1997 [Ref. 27]. A non-invasive iris

recognition system employing the Hough transform was developed in 1996 [Ref. 28].

C. PROPOSED APPROACH

The Nomad Scout mobile robot is equipped with an ultrasonic sonar array. This

enables the robot to take range findings in all directions, and develop a two-dimensional

view of the world in terms of the range returns. We will take the center of the robot at

15

startup to be the origin of a Cartesian plane, as in Figure 4. The x axis is taken to be the

initial forward-looking direction of the robot. The y axis is taken to be the direction 90

degrees counter-clockwise from the robot. This coordinate frame is commonly called the

robot coordinate frame, as opposed to the world coordinate frame, in which the origin

and axes are fixed with respect to the world.

yaxis

Sonar
Transducers

xaxis

TOP VIEW

Figure 4. Cartesian representation of world coordinate system

Note that at startup, the world coordinate system and the robot coordinate system

are the same. This will not likely be the case when the robot returns to this location a

second time for new readings, as some dead reckoning error will have accrued. In each

instance, the robot will determine the range and bearing to any nearby walls in terms of

robot coordinates. If the algorithm is able to provide reliable findings for the ranges and

bearings of these walls, then any substantial difference must be due to the dead reckoning

errors resulting from wheel slippage and other factors.

Each range finding from one of the sonar transducers can be regarded as a point in

the Cartesian plane, uniquely described by an (x, y) pair. The proposed algorithm will be

broken into the following four steps:

16

1) The range data returned from the Sensus 200 system will be converted to

(x, y) pairs representing the Cartesian points (in robot coordinates) where the

echo occurred.

2) These (x, v) coordinates will be parameterized using Hough parameters.

3) Regions in the Hough domain where curves tend to intersect each other must

be represented by clusters of points.

4) A competitive neural network will be employed to identify clusters and

represent them by a single point.

D. CHAPTER SUMMARY

In this chapter, the problem of localization in mobile robots was discussed and

defined. Some of the past and present research in related topics was discussed. A means

for implementing feature-based recognition was proposed and broken into steps. The

following two chapters will introduce the tools necessary to complete the steps outlined

in this chapter.

17

18

IV. THE HOUGH TRANSFORM

The Hough transform was filed as a U.S. patent in 1962 [Ref. 14], and has since

been introduced into more standard technical literature by numerous sources. It has also

been called the point-to-curve transformation [Refs. 17, 29], since the method entails

mapping each point in the Cartesian space into a curve in the parameter space. We begin

this chapter by introducing the fundamentals of parameterization, and then discuss

specifically the Hough parameterization.

A. FUNDAMENTAL PARAMETRIC REPRESENTATION

To demonstrate the concept of parameterization, we begin with a simple example.

It is one of the fundamental concepts of algebra that a straight line in the Cartesian plane

can be uniquely and completely described by two parameters only; the slope of the line

and the y-intercept. The parameterization is already familiar to the reader as:

y = m0x+b0 (1)

where m0 is the slope of the line and b0 is the y-intercept. In this case, the parameters are

m0 andfc0.

If this line is plotted in the m-b parameter plane, it is transformed into a single

point. Further, it can be seen that for any point (x0 ,y0), the set of all lines through

(x0, y0) will be transformed into a straight line in the m-b parameter plane (see Figure 5

(a)). This is not so surprising since the transformation equation (Equation 2)

demonstrates a clearly linear relationship between m and b when xo and yo are held

constant.

b = -x0m+y0 (2)

It can also be seen that if several points in the Cartesian plane lie on a line, then

these points will be transformed in the m-b parameter plane as lines which all intersect at

a single (m,b) point (see Figure 5 (b)). Not surprisingly, the (m,b) coordinates of this

intersection point are exactly the slope and y-intercept of the original line through the

points in the x-y coordinate plane.

19

(a)

(b)

y = m^x + bi

y = m2x + bz

— y = m2x + b3

y
Os'Js)«

, y = m0x + b0

(x2,y2)g,<

(*i>yiy
9

m

m

Figure 5. Point - Line transformations (after Reference [24]). (a) A point in the
Cartesian plane is transformed to a line in the parameter plane, (b) A line in the

Cartesian plane is transformed to a point in the parameter plane.

One drawback in this particular parameterization is that a singularity exists. The

independent variable in the m-b parameter plane is the slope, which is unbounded. When

a line in the Cartesian plane is parallel to the y-axis, the slope becomes infinite.

B. POINT-CURVE TRANSFORMATION

As described by Hough [Ref. 14], and later by Duda and Hart [17], another set of

parameters can be used to transform the Cartesian plane into the 6-p plane. The line

described earlier by Equation 1 could also be described by

p0 = x cos 60 + y sin 00 (3)

where p0 is the shortest distance from the origin to the line, and 0O is the angle of the

normal to the line through the origin (see Figure 6). In this case as well, a straight line in

the Cartesian plane is uniquely and completely described by just two parameters, 0 and p,

but in this new parameterization the singularity problem incurred in the m-b

parameterization has been eliminated. Since both parameters used to describe the line are

20

defined by the normal to the line through the origin, this parameterization is called the

normal parameterization.

Line given by:
y = m0 x + b0 or

p0 = xcosö 0+ ysinö 0

Figure 6. Normal parameterization of a line

The normal parameterization demonstrates some interesting properties when the

transformation is plotted, as shown in Figure 7.

r

(a)

63 92 0j

yA p0 = xcosd 0+ysinO 0

;>

(b)

Figure 7. Point-curve transformations (after Reference [24]). (a) A point in the
Cartesian plane is transformed to a curve in the normal parameter plane, (b) A line in

the Cartesian plane is transformed to a point in the normal parameter plane.

Equation 3 serves as the transformation equation, where the independent variable

6 varies over the range (-K,%). For any given point (x0 ,y0) in the Cartesian plane, the set

of all lines passing through (x0, y0) transforms into a sinusoidal curve in the (0, p)

21

parameter plane (see Figure 7 (a)). For this reason, the transformation resulting from

normal parameterization is sometimes called the point-curve transformation. The curve

resulting from the transformation of (x0 ,y0) is given by

p0 = x0 cos 6 + y0 sin 6 (4)

From Figure 7 (b) it can also be seen that collinear points in the Cartesian plane

will each be transformed into curves, and that these curves will have a single point of

intersection in the (6,p) parameter plane. Furthermore, the (9,p) coordinates of this

intersection point are precisely the normal parameters; 6 is the angle of the normal and p

is the shortest distance from the origin to the line (i. e. the length of the normal).

The Hough transform uses the normal parameterization and point-curve

transformation described. The centerpiece the Hough transform and the shape

recognition algorithm proposed by Duda and Hart [Ref. 17] is that a line in the Cartesian

plane will be transformed to a single point. The task of recognizing a line has now been

reduced to the task of finding a point.

C. HOUGH TRANSFORM TECHNIQUES

Given that lines in the Cartesian plane can be reduced to points in the Hough

domain, the challenge comes in finding the points where curves intersect in the Hough

domain. Particularly challenging is the task of automating this process so that a computer

or robot can find these points without human assistance. The reader should bear in mind

that if the data in the Cartesian plane represent nearly anything in the real, physical world,

they will not be completely collinear; small non-linearities will exist. Therefore, the

curves will intersect at "almost" the same point.

1. Resolution Grids: The Duda and Hart Technique

One possible method for extracting these key intersection points in the Hough

domain is to divide the Hough domain into grid squares. A count would be kept of the

number of curves that pass through each square in the grid. The square with the most

22

curves passing through it must contain an intersection or group of intersections in a small

neighborhood. The original line in the Cartesian plane can then be approximated by the

(0, p) pair at the center of the grid square. If more accuracy is required in the

approximation, simply reduce the size of the grid square.

This is the concept behind the method proposed by Duda and Hart [Ref. 17].

Assuming it would be tedious and inefficient to analyze the Hough domain explicitly to

find the precise intersections, Duda and Hart proposed dividing the Hough domain into a

two-dimensional grid. The grid resolution would be based upon how much noise or

'scatter' existed in the Cartesian domain. Each cell in the grid represents a (0,p) region

where transformations of almost collinear points will nearly intersect. Each cell in the

Hough domain is systematically analyzed to determine the set of curves that pass through

it. Finally, the set of the corresponding coordinate points in the Cartesian plane must

constitute an approximate line, approximately defined by the (0,p) coordinates of the

cell in the Hough domain. The general procedure is outlined in Table 1. Previous work

at the Naval Postgraduate School on mobile robot localization employed this technique

[Ref. 24].

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

For a given point, generate a 6-p curve plotted on the
parameter plane grid.

Note the cells that the curve crosses.

Repeat Steps 1 and 2 for every point.

Count the number of crossings in each cell.

Recover the points whose curves contributed to the total
of each cell.

Estimate a line for each set of points.

Table 1. Steps for Duda and Hart technique (After Ref. [24]).

Although this technique is quite popular, especially among image processing

researchers, it is included in this thesis for information only. It will not be used in this

thesis. Rather, intersections will be solved for explicitly and then clusters will be grouped

by an unsupervised neural network.

23

2. Explicitly Solving for Intersections

It is desired to explicitly express the (0,p) point where two curves intersect in

terms of the original points in the Cartesian domain from which the curves were

transformed.

As stated earlier, a point (x0 ,y0) in the Cartesian domain will be transformed in

the Hough parameter domain to a sinusoidal curve. That curve was given earlier in

Equation 4 as:

p0 =*0 cos0 + yo sin0

Assume there are two curves pi and p2 in the Hough domain which are the

transforms of two points in the Cartesian domain O^y,) and (x2,y2) respectively. The

curves are given by the transformation equations

Pi =*! cosö + y, sinö

p2 = x2 cos 9 + y2 sin 6

It is a fundamental fact of geometry that any two points in the Cartesian domain are

collinear, so it stands to reason that curves px and p2 must intersect. Let (6, p) be the

point in the Hough domain where the two curves intersect.

At the particular value of 6 where the two curves intersect, we must have the

condition that pi = p2. By substituting the transformation equations, we have

PJ = xY cos0 + y, sin6 = x2 cos0 + y2 sin6 = p2

or, equivalently, (JC2 - x2) cos 6 + (y, - y2) sin 6 = 0.

Dividing both sides of the equation by the cosine of 6 gives

/ \ / /sin^T h-^ + U-y^—J = o

Finally, collecting like terms and re-arranging, we arrive at an explicit value for

the particular value of 6 where the two curves intersect, in terms of the Cartesian

coordinates:

{y^-yi) (yi-y2)

24

8 = arctan
1 1

, for^ *y

or, equivalently, ' (5)

0 = Y fory,=y2

Equation 5 gives an expression for 8 which is a function only of the coordinates of

the original points in the Cartesian domain. Once 8 is known, Equation 4 can be used to

solve for the corresponding p:

p = x1 cos0+Vj sin8 = x2 cos8 + y2 sin0 (6)

Hence, given any pair of points (xi, v,) and (x2 ,y2) in the Cartesian domain, the

precise locations of their intersections in the Hough parameter domain can be solved for

by Equations 5 and 6. This is significant, because it implies that it is not necessary to

analyze the entire curve in order to isolate the interesting points on the curve. This will

substantially reduce processing time of the proposed algorithm.

It is important to note that the inverse tangent function will yield two possible

values for 8, separated by % radians. Each 8 will yield a different value for r when used

in Equation 6; which differ by a factor of (-1). This implies that the Hough domain is

symmetric; i.e., (^j,) and (x2,y2) will transform into curves which intersect at two

places in the Hough domain. Due to the symmetry, however, knowledge of only one

(8,p) pair is sufficient.

If multiple coordinates are transformed, and their curve intersections solved for

explicitly, it can be expected that multiple points in the Hough domain will be at the

(0,p) corresponding to a line in the Cartesian plane. In a real environment where noise

exists, it can be expected that "clusters" of points will be congregated near the (0,p)

corresponding to a line in the Cartesian plane. If explicit solution is used, some means

must be used to cluster these data points in the Hough domain and interpret a meaningful

result. It also must be noted that the number of clusters in the Hough domain will not be

known a priori. Clustering of data into an unspecified number of groups using neural

networks is the subject of Chapter 5 of this thesis.

25

D. CHAPTER SUMMARY

In this chapter, the concept of the Hough transform was introduced. The

resolution grid method for its implementation was presented and discussed briefly. A set

of equations for finding the key intersections in the Hough domain explicitly were

derived. Explicitly solving for intersections in the Hough domain will result in noisy

groups of points when lines in the Cartesian plane are not perfectly collinear. This will

almost certainly be the case for real sonar data. The following chapter presents a means

for clustering these data and representing them with exemplar vectors.

26

V. NEURAL DATA CLUSTERING

In this chapter it will be shown how a neural network may be used to classify

clusters of data in two dimensions. Although many methods exist to cluster data, a

variation of the competitive "winner-take-all" neural network has been chosen for this

application because of its simplicity and inherent resistance to noise. To begin with, an

introduction to the "winner-take-all" competitive network is discussed. Next, that

network is modified slightly from its traditional form to enable data representation in

cases where the number of clusters is not known beforehand. Finally, the network is

tested on some sample clusters in two dimensions and computation times are measured.

The proposed network is demonstrated in terms of a generic two dimensional

pattern space. Later, in Chapter 6, the network will be applied in the specific two

dimensional pattern space of the Hough domain.

A. "WINNER-TAKE-ALL" COMPETITIVE NETWORKS

Competitive networks are examples of unsupervised learning networks.

Unsupervised learning implies that the network is presented a set of training data, but is

not given a corresponding set of target outputs for each input. Rather, the network

organizes the training patterns into classes on its own.

The "winner-take-all" learning rule, also referred to in some texts as the Kohonen

learning rule [Ref. 30], differs from most other learning rules in that it cannot be

explained or implemented in terms of a single neuron. Networks employing this learning

rule will be an array, or layer, of neurons with massive interconnections as shown in

Figure 8. The output nodes (neurons) compete, and the one with the maximum response

is allowed to fire. When weights are updated, only the weights of the winning neuron

will be changed; all others will remain the same.

Learning in this type of network is based on the clustering of input data to group

similar inputs and separate dissimilar ones. Similarity in this case becomes synonymous

with dot product; normalized vectors which are very similar will have a dot product of

nearly one. Inputs in the pattern space 9t" are compared to (i.e. dotted with) p weight

27

vectors, also in 9?". The highest dot product wins the competition. Hence, the Kohonen

network classifies input vectors into one of the p categories specified by the weight

vectors.

'n' neurons (inputs)

Figure 8. Kohonen, or "winner-take-all" network. (Highlighted weights are updated.)

Assume an input vector x in the pattern space Si". Let x be a normal vector, i.e.,

a vector with length equal to 1. The first stage of the computation is the competition. A

set of p random weight vectors normalized in 9T is initially created, denoted by the

weight matrix W. The output vector y is determined by the product of the weight matrix

with the input vector x.

y = W« x (7)
pxl Pxn nxl

The largest element in y represents the output of the winning neuron, denoted yc.

Note that since the input vector and the weight vectors are normalized, yc will have a

maximum value of 1. The weights of the winning neuron (the c^ row of W) are then

updated by

w;™ = w:+a(x-<a) where 0 < a < 1

and re-normalized.
"new

^new _ . " c

W

28

The process is then repeated for the next input vector x. The equations above may

be generalized for the J<~ iteration as a function of input vector x\ and are given in

Equations 8, 9, and 10:

y*=W*«X* (8)
pxl Pxn nXl

w*+!=w*+a(x-wf) (9)

w*+1

w*+1=7r^-ir (10) * C A. Jt + l V '

The learning rate, a, is often chosen to be a constant. However it may, also be

chosen to vary with k, depending on the designer's needs. Relatively high values of a

will make the weights converge to the clusters they represent more quickly, but they will

also cause "outlying" points to have a greater effect. Small values will make the network

more resistant to noisy data, but the network will also take longer to converge.

After each of the input vectors has been presented to the network once, the first

epoch has been completed. Each of the data will have been grouped into one of the p

clusters, and the weight vectors representing those clusters will have moved toward those

collective points. Further epochs may be necessary if those weights have not converged

to an accurate representation of the points. Generally, some test is implemented to check

whether the total change in weight values is small enough during an epoch and, if it is, the

network is assumed to have converged.

B. NORMALIZATION PROCEDURE

As stated earlier, it is important that the input vectors, and the weight vectors, be

normalized, else the dot product comparison in Equation 8 will be inconsistent and less

meaningful. It is equally important that the original vector must be recoverable from the

normalized vector. A particular strategy for accomplishing this normalization is outlined

below. This procedure is modified somewhat from the procedure found in Reference 31.

The strategy for this normalization procedure is to represent data in n dimensions

by equivalent normalized vectors in (n+1) dimensions. The data in the original n

29

dimensions will each be scaled independently to make them approximately the same

range, and the last dimension will be added in order to make the length of the new vector

exactly equal to one.

Assume a data vector V in 9t" which represents the data to be input to the

competitive network, but is not normalized.

V = (v, v2 v3...vj

If possible, scale each element in V by dividing it by a constant slightly larger than

the maximum value it takes on in any of the vectors in the data set. For example, if v{

represents an angle in radians, divide it by n. If v2 represents a range finding from a sonar

transducer, then divide it by the maximum detectable range of the transducer. Thus create

a new vector V whose elements are each less than or equal to one in magnitude

f v, V, V, V. ^
V' = '1 "2 "3

(Vl >V2 >V3 ...V„ J max(vj) max(v2) max(v3) max(vn)

Second, choose a value N which is slightly greater than the maximum length of

V'. If the first step was conducted properly, then N will be the square root of n.

Third, add a new entry d to the vector.

V" = [d,vx ,v2 ,v3 ...v„ j

Fourth, set the new element d to a convenient value.

d = p2-\Wf)
Finally, divide the vector V" by N to get a new vector V'" whose length is

identically 1.

V" y'"__
N

The value of d has been constructed to be exactly as long as necessary to make the

length of the vector V" in 9tn+1 equal to one. This normalization procedure has the

advantage that the original vector is easily derived from V" by ignoring the element d,

30

and multiplying the remaining elements by N and by their respective maximum values.

The five steps used for the normalization procedure are summarized in Table 2.

Step 1 Start with data vector V = (vt v2 v3... vn).

Step 2

V' =

Independently scale each of the element

(Vl V2 V3 Vn

.s:

/ / , ,
= (v, ,v2 ,v3 .

•'.') ^max(Vj) max(v2) max(v3) '" maxO,,),

Step 3 Choose a constant equal to the maximum length; N — \n

Step 4
Add an element: \" = id,vl ,v2 ,V3 ...vn j where d = TJ(N

2
 -||V'|2)

Step 5 V"
Divide the new vector by the maximum length; V —

N

Table 2. Steps for normalization of data vectors

C. ADDING A CONTROL MECHANISM TO THE NETWORK

One of the primary drawbacks of the competitive network outlined above is that it

classifies inputs into one of p outputs, where p is the number of neurons in the

competitive layer. Hence, it is necessary to know beforehand the number of clusters the

network is looking for. This burdensome requirement can be alleviated by adding a

control mechanism to dynamically adjust p after each epoch.

The first epoch should be conducted with a value ofp that is much higher than the

expected number of clusters in the pattern space. At the end of the epoch, a series of tests

are conducted:

1. If any neuron has weight values identical to the weights it had at the beginning

of the epoch, then none of the data were classified by it. The neuron is

eliminated.

2. If any two weight vectors are similar, i.e. if their dot product exceeds some

maximum value NNJOL, then the two neurons are combined and a new random

weight vector is created.

31

3. (Test for convergence) If no weight vectors were eliminated and no weight

vectors were combined during the last two consecutive epochs, then assume

that the network has converged. Otherwise, conduct another epoch.

Without the modification of this added control mechanism, this particular network

is commonly referred to as a competitive network. Taking the competition one step

further, these neurons now compete for survival. Losing neurons are eliminated, and in

the end only those neurons which consistently won competitions survive. In this sense,

the network might be called a "Survival of the Fittest" network.

D. DATA CLUSTERING USING THE CUSTOMIZED NETWORK

The Kohonen network described in this chapter, along with the modifications

described regarding normalization and control of the parameter/?, were implemented and

included as Appendix B. The four coordinates {(0.2,0.2),(0.2,0.8),(0.8,0.2),(o.8,0.8)}

were used to create the clusters of data shown in Figure 9.

400 Noisy Input Vectors in 2-D Pattern Space

0.2 0.4 0.6 0.8
X coordinate

Figure 9. Test vectors for neural network clustering

32

A human can easily inspect Figure 9 and come to the conclusion that there are

exactly 4 clusters of data, approximately given by the coordinates:

{(0.2,0.2), (0.2,0.8), (0.8,0.2), (0.8,0.8)}

The challenge is to devise a network that can perform these tasks without human

assistance. The objective will be for the network to determine that there are exactly 4

clusters of data, and that these clusters are represented by exemplar vectors which are

reasonably close to these coordinates.

The points were presented to the network, and an initial value of p = 30 was

chosen. Figure 10 shows the initial placement of the random weight vectors in the 2

dimensional representation. Recall that the true weights are actually 3 dimensional due to

the normalization process. What is plotted is actually the two-dimensional representation

of these weights prior to the normalization procedure.

Initial Placement of Weights
1

0.91-

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

■s
c

'■a
o
o o

1 1 X '

; :§

X
X

x x%

x x

x x x
-

♦ Data Vectors -

- X
X x Random Weights

X
X

-

X X

* ^ X

x x "**""

X

x ^.'
X

X
X . 1—X ■ L

0 0.2 0.4 0.6
X coordinate

0.8 1

Figure 10. Initial placement of random weights

The data vectors were presented to the network, as implemented in Appendix B,

and a learning rate of a = 0.5 was defined. A tolerance of NNJOL = 0.98 was defined for

33

the dot product similarity test of weight vectors. In a reasonable time, the network was

able to determine that there were in fact 4 clusters of data, and converged to represent

these 4 clusters by the 4 exemplar vectors shown in Table 3. As can be seen, these

exemplar vectors are reasonably close to the coordinates from which these noisy data

samples were derived.

X coordinate 0.2044 0.7940 0.2036 0.7954

Y coordinate 0.7982 0.2028 0.2099 0.7962

Table 3. Exemplar vectors chosen by neural network

The exemplar vectors chosen by the network are illustrated in Figure 11. When

compared with the original data in Figure 9, the results appear to be quite consistent with

what a human might have done.

Results of Neural Network Clustering Algorithm

CD
*■»

CO c
T3
O o
Ü
>

0.4 0.6
X coordinate

Figure 11. Results of neural network clustering

The network produced these exemplar vectors in 3.46 seconds. While the

network is obviously not as fast as a human, these results are acceptable for the

application chosen of finding clusters in the Hough domain in order to determine the

location and orientation of walls near the robot.

34

E. CHAPTER SUMMARY

In this chapter the very common "winner-take-all" or "Kohonen" neural network

was introduced. It was shown that this network can be used to cluster data, but is only

useful when the number of clusters is known a priori. Modifications were made to this

network to allow the number of neurons to vary from one epoch to the next, by

eliminating neurons which do not win competitions. The result is an unsupervised

network which clusters data without a priori knowledge of the number of clusters.

The following chapter will draw on the tools introduced in this chapter and

Chapter IV. Specifically, the way in which the issue of localization might be addressed

using these tools is outlined in detail.

35

36

VI. IMPLEMENTATION

This chapter serves to tie together concepts covered earlier in this thesis,

discussing the fashion in which the Hough transform (covered in Chapter IV), and the

neural network (covered in Chapter V) may be used to process sonar data from the

robotic system (covered in Chapter II) to solve the problem of localization (covered in

Chapter HI). As outlined earlier, the proposed solution consists of 4 basic parts:

1) The range data returned from the Sensus 200 system are converted to (x, v)

pairs representing the Cartesian points (in robot coordinates) where the echo

occurred.

2) These (x, y) coordinates will be parameterized using Hough parameters.

3) Regions in the Hough domain where curves tend to intersect each other must

be represented by clusters of points.

4) A competitive neural network will be employed to identify clusters and

represent them by a single point.

The implementation of these steps was done in three function programs written

for MATLAB, and will be covered in detail in this chapter. Steps 2 and 3 will be

combined into a single function by selectively and explicitly solving for intersections in

the Hough domain.

The three programs should be taken as an overall system as illustrated in Figure

12, The inputs consist of range data from the sonar system, and the outputs are \G, p)

pairs representing the distance and orientation of nearby walls.

Sonar Data (6, p) pair
Input °utPut

T

Wall Finding Algorithm

Convert data to
(x,y) coordinates

w Find intersections
in Hough domain

Find clusters in
Hough domain 1 w ^

Figure 12. Overall wall finding algorithm

37

A. CONVERTING SONAR DATA TO X-Y COORDINATES

The code used to gather range data with the Nomad Scout is included in Appendix

D. Originally, the code was intended to also be used with other Nomadic robots, so a 5-

column output was desired. Column 4 is a function of the "Turret Angle" and is not used

with the Nomad Scout, but is used with other Nomadic robots at the Naval Postgraduate

School.

The robot was programmed to cycle through each of the 16 sonar transducers,

then rotate 7.5° counter-clockwise and cycle through each of the 16 transducers again,

then rotate 7.5° counter-clockwise and cycle through each of the 16 transducers a third

time. This results (ideally) in 48 range findings equally dispersed about the robot.

As noted earlier, the robot is able to track its dead reckoning position and

orientation. At startup, the robot marks its current position as the origin and the direction

of sonar (1) as the x axis. This becomes the world coordinate frame. As it navigates, it

tracks its position relative to these initial settings. Since it was desired to process the data

off-line in order to demonstrate the concept, data were written to an ASCII file in the

five-column format shown in Table 4. The net result will be a matrix of data with 48

rows (the total number of sonar range findings gathered) and 5 columns. The first 16

rows will be the range findings of sonar transducers 1 through 16 (in that order) at the

initial orientation. The next 16 rows will be the range findings at the 7.5° counter-

clockwise offset, and the final 16 rows will be the range findings at a 15° counter-

clockwise offset.

Column 1 Column 2 Column 3 Column 4 Column 5

(Dead Reckoning
X Coordinate in
inches) times 10

(Dead Reckoning
Y Coordinate in
inches) times 10

(Dead reckoning
orientation of robot
relative to X-axis
in degrees) times

10

Not used with
Scout robot.

Range return of r*
sonar transducer in

inches

Table 4. Data format of range findings

Once the data are gathered and collected in this matrix form, it is a fairly

straightforward mathematical process to represent the range findings as (x, y) pairs in the

38

world coordinate system relative to the origin and x-axis defined at startup. The

implementation is included in Appendix C.

First, unreliable data in the matrix must be discarded. The maximum range

finding of the sonar transducers is 255 inches. Among researchers at the Naval

Postgraduate School, however, experience has shown that data can be unreliable even at

much smaller ranges. For this application, we choose to rely only on range findings that

are less than 110 inches. Any row whose entry in column 5 exceeds 110 is simply

discarded. Similarly, range data less than 17 inches are also considered unreliable. Any

row whose entry in column 5 is less than 17 is discarded.

Next, for each range finding, the robot must know its own (x,y) position in the

world coordinate system. This will be the location of the center of the robot, relative to

the startup origin, as tracked by dead-reckoning. This particular application envisions the

robot taking these readings at or near the world coordinate origin. Other applications

would require minor revisions to the code in the appendices. Units are chosen to be

inches. Ideally, since the robot is simply rotating to take the 48 returns, these two values

should be identical for all 48 returns. In reality, however, each set of 16 returns will be

taken from a slightly different (x,y) position. This is due to the fact that the Scout is not

a truly holonomic system; its wheels must move in order for the robot to rotate.

ColumnX
%robot — 7Z (11)

_ Column!
Yrobot = 77j (12)

Third, the robot's orientation for each range finding must be known. This value

should be identical for each set of 16 returns, since the robot is stationary when these

returns are taken. Units are chosen to be radians.

"robot ~

(Columnh\(n ^

180 j
(13)

10

It follows from geometry that the x coordinate of the range finding should be the x

coordinate of the robot, plus the quantity of the range times the cosine of the angle of the

39

range finding. It is important to include the angular offset of each transducer in the

computation. The angle between transducers is 22.5°, as shown in Figure 13.

\ 225°= 0.39 radians

xaxis

Figure 13. Angular relationship of transducers

It is also important to remember that the range finding is relative to the transducer,

not the center of the robot. Hence, the radius of the robot must be added to this value.

This value was measured in the laboratory to be approximately 7.2 inches. The v

coordinate can be similarly calculated. The (x, y) location of the sonar return from a

transducer is given by Equations (14) and (15):

Y — v i
return -"■ robot

(Columns "\ (n (225)7T ^
———+R cos 6rnhnt +- — (/)

^ 10) \ robot 180 y

Y =Y + return robot

f ColumnS \ (
+R sin

V 10

180

(22J5)7z;
robot 180

A
U)

(14)

(15)

where, R is the radius of the robot (7.2 inches for a Nomad Scout) andy' is the index of the

individual transducer (l < j < 16).

As a final step, the resulting data points are sorted in counterclockwise order

starting with the point closest to the x-axis (see Figure 14).

40

(x,y) locations of
Sonar Returns

Once (x,y) representations of Sonar Returns
are computed, sort the data in counter-clockwise >
order, beginning with the one closest to the x-axis.

Figure 14. Cartesian data are sorted counter-clockwise

B. REDUCED HOUGH TRANSFORM OF SONAR RETURNS

Each of the (x,y) pairs resulting from the conversion of the range data can be

transformed under the Hough parameters to a curve. However, it is not necessary to

know the entire curve in order to find walls near the robot. Walls in the world (Cartesian)

coordinate system will be transformed to points in the Hough domain; specifically, points

where curves intersect. Hence, it is only necessary to find those points in the Hough

domain where the curves representing the transformed sonar data intersect.

Further, it is not possible that the return from transducer 1, for example, will

return an echo from the same straight-line wall as transducer 9. These transducers are

facing in opposite directions. Hence, we can reduce the time required to find

intersections in the Hough domain by checking each curve for intersections with the

transformed curves of its four closest neighbors; two clockwise and two counter-

clockwise. These four intersection points will only be included if they are all within a

reasonably small neighborhood of one another. The implementation in MATLAB version

4.2 (b) of this reduced representation in the Hough domain is included with this thesis as

Appendix A.

In Chapter IV it was shown that for any two points in the Cartesian domain, the

intersection of their curves in the Hough domain was given by Equations 5 and 6:

41

8 = arctan 2 *1
, fory, *y2

(5)

6 = K for yl = y2

p = Xj cosö + ^i sin0 = ;c2 cos0 + y2 sin0 (6)

Once the (x,y) coordinates of the sonar returns are determined, and these data are sorted

as illustrated in Figure 14, we apply the following steps to determine clusters of key

intersections in the Hough domain:

1) For each (x,y) point, find the (ö,p) locations in the Hough domain where its

transformed curve intersects the curves of its 2 nearest clockwise and 2 nearest

counterclockwise neighbors.

2) Check to see if these four (d, p) points are within a reasonably small

neighborhood of one another. Appropriate values to select for this test will be

covered in the Chapter 7.

3) If they are, then "tag" all four (0,p) points for presentation to the clustering

algorithm, and move on to the next (x,y) point. If not, then simply move on

to the next (x,y) point.

4) Finally, note the symmetry in the Hough domain. Include only (0,p) points

where p is positive. In fact, only points where p is greater that the radius of

the robot plus the minimum trusted range of the transducers need to be

included.

For example, assume the points in the Cartesian domain are arranged as shown in

Figure 15. When transformed to the Hough domain, these points become the curves

shown in Figure 16. The reduced Hough transform of these points become groups of

points near the key intersections, as shown in Figure 17. Since there is no noise in this

case, the points are grouped very tightly around the key intersections; there are actually 56

points.

42

Since this process differs markedly from the conventional "Hough transform," it

will be called the "Reduced Hough transform" in this thesis. The \8,p) domain where

these clusters of points exist will be referred to as the "Reduced Hough domain."

Points in Cartesian Domain

x ca

Figure 15. Test points in the Cartesian domain

Transformed Curves in Hough Domain
15rr

Q- 0

-1 0 1

9 in radians

Figure 16. Test points transformed to curves in the Hough domain

43

15
Reduced Hough Domain; 56 points total

10

5

*

«a. 0
■

-5 -

-10
■

-15
-3-2-1 0 1 2 3

8 in radians

Figure 17. Test points transformed to clusters in the reduced Hough domain

At the conclusion of this portion of the algorithm, the result should be clusters of

isolated points in the Hough domain, concentrated in regions where multiple (d,p)

curves tend to come very close to intersecting.

C. FINDING CLUSTERS IN THE HOUGH DOMAIN

The "Survival of the Fittest" network presented in Chapter 5 is the method chosen

to group the data into clusters and represent them by exemplar vectors. Each (0,p) point

is treated as an input vector in 9?2. During the normalization process, 6 is divided by its

maximum value (n radians), and p is divided by the maximum trusted range of the

transducers (110 inches).

In Figure 18, the network was presented with the 56 points from the previous

example. The number of neurons, p, was initially set to a value of 30. The figure shows

44

that the network found exactly 2 clusters of points. Further, it represented these two

clusters with reasonably accurate exemplar vectors.

15

10

o. 0

-10 .

-15 U

Network Results; Computation Time = 0.88 seconds

2 clusters found at:

0.7854

4.2426

2.3562

2.8284

o Results of Network Clustering

* Original Presentation Data

-10 12 3

8 in radians

Figure 18. Results of network clustering in the reduced Hough domain

D. CHAPTER SUMMARY

In this chapter, the proposed algorithm for feature based localization in a mobile

robot was discussed in detail, drawing on concepts introduced in earlier chapters. In the

next chapter, the results of this algorithm applied in both simulated and actual indoor

environments are presented.

45

46

Vn. EXPERIMENTAL RESULTS

In this chapter the proposed algorithm (which is described in Chapter 6) is applied

to sets of data and quantitative results are measured. Initially, simple tests are performed

to determine whether the algorithm performs suitably under ideal conditions. Further

modeling is then conducted with a simulated robot in order to demonstrate compatibility

of the algorithm with the Scout platform. Finally, an actual Scout is used to take sonar

readings from a real world indoor environment, and those readings are analyzed to find

walls.

If the algorithm is to prove useful for the task of localization in an autonomous

mobile robot, then the output(s) of the algorithm must be consistent for range data taken

at the same location. The output need not be an accurate representation of the nearby

walls (although this will be helpful if future research applies this algorithm to other

tasks). It is necessary that the algorithm consistently identify the same number of walls,

and at the same range and orientation, when presented with range data gathered at the

same location. Consistency must be within:

• 1 inch (excellent) to 3 inches (adequate) for range to the wall, and

• 1 degree (excellent) to 3 degrees (adequate) for orientation of the wall.

Additionally, the algorithm must produce results in a reasonable amount of time.

For this application, we consider 5 seconds to be an adequate goal. If the network is able

to produce consistent results in less than 5 seconds, then it is suitable for localization of

the mobile robot.

A. SIMPLE TESTS

Two simple tests were conducted to determine whether the algorithm was

performing as expected under ideal conditions. The first of these simulates sonar findings

under noise-free conditions. The second is intended to demonstrate that the algorithm

does not require nearby walls to be perpendicular in order to find them. Walls may be

placed at arbitrary angles to one another, and the performance of the algorithm is

independent of these angles. The neural network learning rate was set to 0.5 for these

47

tests, and the Hough domain tolerances were set to 10 degrees and 10 inches. The

relevance of these parameters will be discussed later in this Chapter. We do not yet test

for consistency in the results, as these are simulated returns and free of noise. Rather,

these two tests are simply intended to verify that the algorithm behaves in the anticipated

manner.

1. A Simulated Corner

For the initial testing, an artificial 48 by 5 return matrix was devised which would

simulate the returns of a nearby comer under ideal conditions. The matrix represents

those returns that would arise from the setup shown in Figure 19, under absolutely ideal

conditions (with no noise whatsoever). The robot is envisioned to be 50 inches from one

wall, and 40 inches from another. The orientations of these walls are -45° and -135°,

respectively. The robot is envisioned to perform 3 cycles of readings so that 48 returns

will result; each return separated by 7.5°. Under noiseless conditions, the value of the

returns was computed, and a matrix was created from these returns to imitate the output

generated by the Scout executing the program in Appendix D.

Figure 19. Simple test # 1: A simulated corner

The simulated returns are plotted in two dimensions in Figure 20, and the returns

which fall within the trusted range (less than 110 inches but more than 17 inches) have

48

been circled. Note that the robot's perspective of its environment is only two

dimensional.

Robot two-dimensional view of world

Sonar Retur
Trusted Reli

rns
urnsi

Figure 20. Simple test # 1: Robot's view of the world

The returns were converted to (x, y) points, and these points then transformed to

the Hough domain. For the sake of clarity, the complete Hough transform of these points

is shown in Figure 21 (a), although this was not used. The collection of intersection

points shown in Figure 21 (b) was presented to the neural network for classification. The

network was able to determine exactly two clusters of data, and represented those clusters

by the exemplar vectors shown in Table 5.

e -45.0000 -134.9999

p 49.9999 40.0000

Table 5. Simple test # 1: Exemplar vectors

49

(a) Hough Transform of Trusted Returns

o c

o sz

100

50

0

-50

-100

I— i i 1 1 —i

£

—i-

-**^>.V ^M ■"„......'—; ..."TT- vjl«-*_Lj 1 " '*^^_

§§;

~~-^*^-*

^>-
i

—~-~^ ^^s^ -^i^

 i ,
 i 1 1 1

-2-10 1 2
theta in radians

(b) Hough Plane Reduced to 92 points, Exemplars Found

W
CD

SZ o c

100
—i 1 i 1 1 r-

50 ©f- © -

0 -

-50

100
 i

+ totersectionPointe
o Exemplars After Clustering

i ' i ■

-2 -1 0 1
theta in radians

Figure 21. Simple test # 1: Hough domain representation of simulated sonar returns (a)
Hough transform of all trusted returns (b) Reduced Hough transform and exemplars

found during clustering.

If the algorithm is performing properly, then the exemplar vectors chosen by the

network (see Table 5) should be reasonably accurate descriptions of the nearby walls.

Figure 22 shows the walls chosen by the network superimposed over the original sonar

returns. By inspection, the chosen vectors seem to coincide with the simulated walls.

Additionally, the time required for the network to determine the range and orientation of

these two walls falls well within the standard established of 5 seconds. From this test it

appears that the algorithm is behaving as expected, and further investigation is warranted.

50

Sonar Returns and Detected Walls; Processing Time = 1.27 seconds

Sonar Returns
Trusted Returns

■ Detected Walls

Figure 22. Simple test # 1: Simulated sonar returns and detected walls

2. A Case In Which Walls Are Not Orthogonal

The proposed algorithm has the property that it is independent of the orientation

of the walls with respect to one another. Walls may be at arbitrary angles to one another,

and the performance of the algorithm is independent of these angles. To demonstrate this

a second test is performed, in which the walls near the robot are not perpendicular to one

another. The scenario is constructed as shown in Figure 23, with the walls given by the

ranges and orientations shown.

51

9

P

90.0°"

45.0"

LJ

18.43°

42.69"

Figure 23. Simple test # 2: Non-orthogonal walls

Again, these data were simulated. A 48 by 5 matrix was designed to imitate the

returns that would have occurred if the robot were in this environment, and ideal

operating conditions were present so that sonar returns were free of noise (See Figure 24

(a)). The data were then presented to the algorithm, and exactly three walls were detected

and represented by the exemplar vectors shown in Table 6. When compared to the true

locations of these simulated walls given in Figure 23, the results appear to be acceptable

even when the walls are not perpendicular.

e 18.4348 89.9998 161.5652

p 43.1655 45.0000 43.1656

Table 6. Simple test # 2: Exemplar vectors

These results are illustrated in Figure 24. The detected walls are shown

superimposed on the sonar data which form the robot's two-dimensional view of the

world. The walls seem to have been placed in approximately the same place where a

human viewing the data would have placed them. The network was able to accomplish

this in less than two seconds, which is acceptable for this application.

52

Robot two-dimensional view of world

G-
%
*
*

+ * + + +
+

+ Sonar Returns
o Trusted Returns

(a)

Sonar Returns and Detected Walls
Processing Time = 1.54 seconds

+ Sonar Returns
o Trusted Returns

— Detected Walls

(b)

Figure 24. Simple test #2: Simulated sonar returns and detected walls (a) Robot's two
dimensional view of the world, (b) Detected walls superimposed on sonar range data.

This scenario demonstrates that nearby walls need not be orthogonal for the

algorithm to function properly. In this scenario, walls which intersected at arbitrary

angles were properly identified, and subsequently represented by accurate exemplar

vectors. It also further supports the conclusion that the algorithm appears to be

functioning properly.

B. SIMULATED ROBOT TESTING

Nomadic Technologies has developed a program called NSERVER™, which can

be used to simulate its robots for the purpose of testing and developing programs. The

program allows the designer to build complex environments easily, and simulate the

53

behavior of the robot in these environments. While the program does not completely

simulate the non-ideal acoustic properties that affect the sonar transducers, the program

does enable the algorithm to be tested in more complex scenarios in order to find cases

where it may not work. Additionally, these tests verify the code used to gather the sonar

data prior to implementation on the Scout. The program used to gather sonar data was

run in several locations in the virtual environment shown in Figure 25, and the data

analyzed to find walls.

Figure 25. Virtual environment used for simulations

All of the simulation scenarios run in this virtual environment were conducted by

the network using a constant learning rate of 0.5 in the neural network, and Hough

domain tolerances of 10 degrees and 10 inches. These parameters are not ideal for noisy

environments; adjustment of these and other parameters to optimize performance of the

algorithm will be discussed later in this chapter.

Again, these data are noise-free. The results are not yet analyzed for consistency.

Rather, we conduct these simulations to determine if there are scenarios in which the

algorithm is unable to determine the correct number of walls, or produces grossly

54

inaccurate exemplar vectors. Also, we compare the detected walls to the sonar returns to

verify that they generally coincide.

1. Corner of a Virtual Room

The first set of data was gathered after placing the virtual robot in the lower right

corner of the map, facing generally toward the doorway, as shown in Figure 26. The

direction the robot is facing is denoted by a white tick mark on the robot. Once placed,

the program is able to provide the x and y positions of the robot on the map coordinate

system, as well as the turret angle. Since the Nserver simulation program runs in map

coordinates, and for this application it is desired to receive the data in robot coordinates,

these values were simply noted at the time the robot was placed and subtracted from the

appropriate columns in the 48 by 5 matrix before presentation of the data to the wall-

finding algorithm.

«

Figure 26. Simulation # 1: Problem setup

Once the data were collected, and adjusted to make the robot's position and

orientation the origin and x axis, the matrix was presented to the algorithm and

computation time was measured. In less than one second, the network determined that

there were exactly two walls in the vicinity. It chose two exemplar vectors to represent

55

these walls, which are given in Table 7. Figure 27 shows the detected walls

superimposed over the sonar returns. The detected walls differ by nearly 90 degrees, an

indicator that the results are fairly accurate. Additionally, the walls appear to coincide

with the sonar returns within an acceptable margin. The results from this first location

would seem to indicate that the algorithm can handle this scenario reasonably well.

Sonar Returns and Detected Walls; Processing Time = 0.93 seconds

~ Sonar Returns
o Trusted Returns
— Detected Walls

Figure 27. Simulation # 1: Sonar returns and detected walls

6 -130.6130 -41.3164

P 54.4090 71.9664

Table 7. Simulation # 1: Exemplar vectors

56

2. A Corridor

In the second test, the robot was placed in a corridor as shown in Figure 28. The

sonar range findings were processed in the same manner as the previous scenario. In this

case, we expect the network to choose exemplar vectors which are nearly parallel to one

another. We also expect to find that the walls, when superimposed on the sonar range

findings, will coincide with the plotted range findings.

ft

m

Figure 28. Simulation # 2: Problem setup

The exemplar vectors chosen by the network are shown in Table 8. In this case,

the network shows a slightly greater error than in the previous example, the chosen

exemplars are nearly 2 degrees from being parallel. This result seems marginally

acceptable, but is also partially due to the parameters chosen for the network.

Performance may be expected to differ when learning rate and tolerance parameters are

adjusted.

e -88.4958 90.5513

p 26.4250 34.0822

Table 8. Simulation # 2: Exemplar vectors

57

The walls chosen by the network are illustrated in Figure 29, superimposed on the

range data. The walls appear to coincide with the sonar data at points near the robot. The

algorithm appears to work in a corridor scenario, though it is identified that accuracy

might be improved if parameters are adjusted.

Sonar Returns and Detected Walls; Processing Time = 1.43 seconds

+ Sonar Returns
o Trusted Returns
— Detected Walls

G-

Figure 29. Simulation # 2: Sonar returns and detected walls

The computation time, as shown in Figure 29, is greater that shown for the

previous scenario. This is primarily due to the fact that the two dominant clusters in the

Hough domain were each comprised of a greater number of points, and loosely grouped.

This implies that the neural network will take longer to cycle through a single epoch and,

therefore, will likely take longer to converge. The computation time is still quite

acceptable, well within the 5 second benchmark established.

58

3. Walls Which Are Not Orthogonal

For the next test, the robot is placed in the upper-left corner of the map, facing

generally toward the corridor of the last example, as shown in Figure 30. As in the

previous examples, the exemplar vectors representing the walls are shown in Table 9, and

are illustrated along with the sonar returns in Figure 31.

Figure 30. Simulation #3: Problem setup

e 72.6986 -61.4646 -153.1804

p 61.2021 98.7628 42.0435

Table 9. Simulation # 3: Exemplar vectors

The network has again determined the correct number of walls in its vicinity. The

walls which are orthogonal in the map were chosen to be represented by exemplars which

are within 2 degrees of being orthogonal. This despite the fact that one of the walls was

very near the maximum trusted range of 110 inches. From Figure 31 it is apparent that

the exemplar vectors chosen by the network are reasonable representations of the actual

walls. The time required to process the data is also acceptable.

59

Sonar Returns and Detected Walls; Processing Time = 1.21 seconds

+ Sonar Returns
o Trusted Returns
— Detected Walls

Figure 31. Simulation # 3: Sonar returns and detected walls

4. Short Walls: A Partial Failure

Another test was conducted to determine if the network could recognize and

identify very short walls. For this test, the robot was placed in the upper-right corner of

the map, facing generally toward the doorway, as shown in Figure 32. The wall to the left

of and slightly behind the robot is short, and it is was questioned whether there would be

enough echo returns from this wall for the algorithm to recognize it.

Data were collected and presented to the network in the same fashion as in the

previous scenarios. The exemplar vectors chosen by the network are shown in Table 10.

In this case, the network incorrectly determined that there were two walls in its vicinity.

These walls are shown, plotted along with the sonar returns in Figure 33; it is clear that

the short wall in question was in fact neglected by the network.

60

Figure 32. Simulation # 4: Problem setup

e -155.8561 71.8601

p 63.6093 53.9698

Table 10. Simulation # 4: Exemplar vectors

Sonar Returns and Detected Walls; Processing Time = 1.32 seconds

Sonar
Truste o Trusted Returns!
Detected Walls

Figure 33. Simulation # 4: Sonar returns and detected walls

61

5. Near A Doorway: Total Failure

For any given system, it is as important to know the points of failure as success.

A final simulation was conducted to determine how the network would react to a

discontinuity in the wall. For this test, the robot was placed very close to an open

doorway. If the robot was relatively far away from the doorway, the opening was simply

ignored and a single wall was recognized. The robot was gradually moved toward the

doorway until it was very close, as shown in Figure 34. In this configuration, very few

echoes are returned from the wall containing the open door, and the clusters in the Hough

domain become insubstantial. The neural network is unable to cluster the points, and

failure occurs. In this configuration, the network did not determine any walls at all.

Figure 34. Simulation # 5: Problem setup

C. PROCESSING REAL WORLD SONAR DATA

Although new problems arose when the algorithm was applied to noisy sonar data

collected in the real world, the overall performance remained high. Neural networks are

often chosen for many applications because of their ability to perform well under noisy

conditions. By checking for intersections within a neighborhood in the Hough domain,

62

we have also equipped that portion of the algorithm to handle a certain amount of noise.

The result is an algorithm that performs nearly as well with noisy, real-world data as it

does with ideal, simulated data.

1. Tuning Algorithm Parameters To Deal With Noise

When noise is present in the data, the result is inconsistency in the output of the

algorithm. This problem is overcome by adjusting various parameters in the system. For

example, a high learning rate in the neural network is likely to yield inconsistent results

since the order of the data presented to that stage is randomized. Dropping the learning

rate will improve the consistency of the algorithm, but dropping it too far will prevent the

weights from converging to the clusters. Likewise, the p and 0 tolerances used to find

intersections within a neighborhood in the Hough domain must be increased if the cluster

sizes are too small, and decreased if they tend to be loosely grouped. The number of

neurons used in the network could also be adjusted to affect the performance of the

algorithm, as well as the minimum and maximum trusted range returns. By trial and

error, the values summarized in Table 11 have been found to yield consistent and accurate

results with real-world data.

Symbol Meaning Recommended
Value

a Constant Learning Rate used to update
neurons in competitive network

0.04 < a < 0.1

#roL 1st Tolerance used to determine if
intersections in the Hough Domain are

within small neighborhoods

8 degrees

PTOL 2nd Tolerance used to determine if
intersections in the Hough Domain are

within small neighborhoods

6 inches

P Number of neurons initially used in
competitive network

30

NNTOL Similarity tolerance used to determine
whether neurons should be combined.

0.99

RMAX> RMIN Range over which sonar range returns
should be considered reliable

17 to 110 inches

Table 11. Recommended parameters in algorithm

63

2. Real World Corner in a Cluttered Room

For the initial real-world test, the robot was placed near a corner in a somewhat

cluttered room. Precise measurements from the robot center to the walls were not

possible, but were also unnecessary since only consistency of the outputs is needed. One

wall was in front of the robot at an orientation between 0 and 5 degrees, and at a range

between 45 and 47 inches. The other wall was to the robot's left, at an orientation

between 90 and 95 degrees, and at a range between 52 and 54 inches.

Three sets of 16 sonar readings were taken and presented to the network. The

sonar returns were converted to (x, y) points, and those points converted to clusters in the

Hough domain. The representation of the sonar returns in the Hough domain is

illustrated in Figure 35. It is difficult even for a human to determine intersections from

the noisy curves shown in Figure 35 (a). The task becomes somewhat easier when these

curves are reduced to the clusters shown in Figure 35 (b), but even in this case the

outlying data can be misleading.

(a) Hough Transform of Trusted Returns

-10 12
theta in radians

(b) Hough Plane Reduced to 20 points, Exemplars Found
100

S 50

-1 0 1
theta in radians

Figure 35. Hough domain representaion of sonar returns gathered in a real world
corner (a) Complete curves in the Hough domain (b) Clusters in the reduced Hough

domain

64

As shown in Figure 35 (b), the size of clusters in the Hough domain is much

smaller when the sonar data are noisy. As will be seen, however, 20 points are more than

enough for the competitive network to develop a consistent set of exemplar vectors.

The data points were presented to the algorithm ten times. In each case, the

network (using the values given in Table 11) was able to discern exactly two walls. The

resulting exemplar vectors from each presentation are shown in Table 12.

Wall 1

e P

91.2420 52.7264

91.0209 52.0958

91.4327 52.7328

90.9269 52.8511

90.4485 52.7219

90.9137 53.0297

90.5053 53.2157

90.8307 52.9908

91.4669 52.2954

91.1774 52.6492

Wall 2

e P

3.7852 46.6659

3.6753 46.6624

3.6506 46.6627

3.5926 46.6478

3.7589 46.6653

3.5883 46.6550

3.4605 46.6503

3.7865 46.6538

3.6721 46.6636

3.3600 46.6289

Table 12. Summary of algorithm output for sonar input gathered in real world corner

The consistency of the algorithm output is evident. The values reported for the

orientation of walls range just over 1 degree over 10 samples. The values reported for the

range to that wall range slightly more than an inch.

The consistency of the outputs is far more important for the chosen application

than their accuracy. Localization will be addressed by having the robot find range and

bearing to nearby walls at startup, and storing those values in memory. After the robot

has moved about and accumulated some dead reckoning error, the robot will return to

what it believes is its startup position, and take those ranges and bearings again. The

dead reckoning error is taken to be the difference between the two samples. This

application relies on the notion that range and bearing findings of nearby walls will be

65

consistent if taken from the same position. Since it is apparent that they will be

consistent within approximately 1 degree and 1 inch, we may safely rely on this algorithm

to correct dead reckoning errors.

The walls represented by the final set of exemplar vectors is shown in Figure 36,

plotted along with the sonar returns taken from the robot's location. Although accuracy is

not necessary for the chosen application, the lines appear to be fairly accurate descriptions

of the sonar data collected. Finally, we note that the time required for the algorithm to

develop a set of exemplar vectors is 1.21 seconds, which is well within acceptable limits.

Sonar Returns and Detected Walls; Processing Time = 1.21 seconds

+ Sonar Returns
o Trusted Returns
— Detected Walls

(jSQBCOC
W O^

S G-

0
©

Figure 36. Sonar returns and detected walls in a real world corner

66

3. Real World Corridor in a Cluttered Room

For the final test, a "corridor" was constructed out of one wall in the laboratory,

and scraps of cardboard taped to a countertop. No attempt was made to "smooth" the

edges of the cardboard in the constructed wall. The laboratory wall also had an

outcropping approximately 12 inches wide, jutting out approximately 6 inches into the

room. The environment also included tables and other objects which served to obfuscate

the two dimensional representation; these were intentionally left in place.

Note that for the application chosen, a corridor is not a suitable startup location.

One would choose to startup the robot in a location where features are distinguishable;

range and orientation to walls would ideally be identical for any location down the length

of the corridor. This test is included for the sake of future research, which possibly could

focus on mapping applications.

The robot gathered a set of sonar returns in the environment described. These

returns are shown in Figure 37, with those returns which fell within the trusted range

circled. When these data were presented to the algorithm, the two walls given by the

exemplar vectors in the first row of Table 13 were found in less than a second. These

results are plotted in Figure 37 along with the sonar returns. It is apparent that the walls

chosen by the network are not parallel, indicating some inaccuracy in the algorithm. As

stated earlier, however, consistency is more important than accuracy for this application.

The data were presented to the network ten times, resulting in the exemplar vectors

shown in Table 13. The consistency of the algorithm in this case is acceptable, and could

possibly be improved further by dropping the learning rate and the maximum trusted

range of the sonar returns. Accuracy could also be improved by dropping the maximum

trusted range, and adjusting other parameters in the network as necessary. Accuracy is

also greatly affected by the fact that the original range data are not entirely reliable, due to

the non-ideal propagation characteristics of the acoustic signals.

67

Sonar Returns and Detected Walls; Processing Time = 0.94 seconds

r Sonar Returns
o Trusted Returns
— Detected Walls

reP0O3D%^^-

Figure 37. Sonar returns and detected walls in a real world corridor

Walll

e P

-95.3346 36.3839

-95.8529 36.2059

-95.0802 36.7434

-95.6678 36.3207

-96.0574 35.9895

-95.8502 36.4556

-95.9314 36.3096

-95.8041 36.1182

-95.5950 36.4792

-96.1437 36.1192

Wall 2

e P

88.0275 49.0765

87.8375 48.7080

87.7925 47.3405

89.0607 47.5971

88.8116 47.8388

87.2968 48.2417

87.3118 48.5150

88.0200 48.6663

89.7279 48.1172

87.0519 49.3283

Table 13. Summary of algorithm output for sonar input gathered in real world corridor

68

D. CHAPTER SUMMARY

In this chapter the results of testing the algorithm in both real and simulated

indoor environments were presented. The algorithm was shown to perform adequately

for the chosen task, although some improvement in accuracy must be achieved if the

algorithm is to be applied for mapping in future research. The following chapter will

discuss some of the directions this future research might take.

69

70

VIII. DISCUSSION

A. IMPLICATIONS

It is evident that, given a set of sonar echo returns from a Nomad Scout robot, the

algorithm proposed in this thesis is able to determine the range to and orientation of an

unspecified number of walls in the vicinity of the robot. The algorithm is able to produce

results that are acceptably consistent, and can do so within an acceptable amount of time.

The immediate implication is that a robot may be commanded to determine the

location of any nearby walls at startup. After some dead reckoning error has accrued, the

robot may be commanded to return to the world coordinate origin, specified at startup.

The location of nearby walls can again be determined. Any difference in the range or

orientation of nearby walls can be presumed due primarily to dead reckoning error. The

dead reckoning track may then be adjusted, and navigation of the robot may resume.

B. FUTURE WORK

The most pressing requirement is the implementation of the proven algorithm in

C. so that it may be run in the robot's high-level control system. A more thorough

analysis of the parameters specified in Table 11 should also be conducted to ensure that

the parameters used are optimum.

The consistency of the algorithm could possibly be improved even further by

dropping the learning rate, and adjusting the test for convergence of the neural network as

necessary. In this case, it may be necessary to conduct more than 48 range findings. If

the range data become redundant at more than 48 range findings, then the robot might be

moved during the process. 48 samples may be taken at one location, and 48 more at

another location. A thorough analysis should be conducted to determine the optimum

number of samples to take, and the optimum parameters to use throughout the algorithm.

This leads directly to the concept of continuous localization. Since the process

takes only a few seconds, there is no reason it could not be set to run in the high level

71

control every 30 seconds or so. Minor modifications of the code included in the

appendices would be necessary to enable the algorithm to run even when the robot is far

away from the world coordinate origin. Prior to the cycle, the dead-reckoning position of

the robot would be noted. The x and y coordinates would simply be subtracted from

columns 1 and 2, respectively. The steering angle from the dead reckoning track would

be similarly noted, and subtracted from columns 3 and 4. In this fashion, the algorithm

could be run at any arbitrary position and orientation in the world coordinate system.

Since the algorithm is able to place walls relative to itself, and localization

provides the robot with its own location and orientation in the world, it follows that

mapping applications might be explored. Mapping requires the algorithm outputs to be

not only consistent, but accurate as well. This thesis has investigated only the consistency

of the outputs, as the chosen application only requires this. The outputs do appear to have

some accuracy, however. A thorough investigation of the accuracy should be pursued.

It is likely that the algorithm can only be as accurate as the sonar range data that

are fed into it, although the Gaussian nature of the noise might dispute this claim. The

accuracy of the Sensus 200 system might be improved by combining it with a time-of-

flight laser [Refs. 25, 26]. Another method could entail weighting the range data

according to reliability prior to or during the Hough transform [Refs. 20, 21]. Other

methods could entail fusing the sensor data from the Sensus 200 with information from

some other sensor system, or with range data provided by a second robot [Ref. 5].

Mapping would also require the algorithm to provide some information about the

length of the wall found. It may be possible to keep track of which transducer the points

in the Hough domain resulted from. This information would continue to be tracked

during the clustering process. When the neural network converges and the output vectors

are given, it would also be possible to specify which transducers produced data which

resulted in each wall. In this fashion, some information about the length of the wall is

provided; although the accuracy of this information will suffer substantially as the robot's

range from the wall increases.

The suitability of this algorithm for other robotic platforms is another area that

might be explored. Adaptation of the concept for platforms equipped with ranging

72

sensors other than ultrasonic sonar may be possible. It is also feasible that the code could

be adapted to robots with alternative mobility, such as legged robots. For a robot with the

proper array of sensors, it is even feasible to expand this concept to recognize features in

3 dimensions rather than 2.

Several researchers have explored the Hough transformations Cartesian shapes

other than straight lines [Refs. 17, 22, 23]. It may be possible to modify the algorithm of

this thesis to enable the robot to recognize features more complex than the straight walls

covered in this thesis. This could eventually lead to a feature-based recognition system

that works outdoors as well as indoors. Such a system would be particularly useful in

underwater and space exploration scenarios, as well as cases where a land-based outdoor

robot does not have access to 4 GPS satellites simultaneously or the accuracy of GPS is

insufficient. If the robot were enabled to recognize complex features in 3 dimensions, the

applications would be without bound.

The algorithm presented in this thesis is a demonstration of concept, not a finished

product. It is intended to open to the door for follow-on projects, which will build on the

fundamentals covered in this document, and bring about an enhanced degree of

practicality.

73

74

APPENDIX A. HOÜGHRED.M

function Points = houghred(X,Y,RTol,ThetaTol,MinRad)

% HOUGHRED points = houghred(X,Y,RTol,ThetaTol, MinRad)
%
%

%
%
%

%
%
%
%
%
%

%

Returns only the key data elements of the Hough Transform
as a 2 x ? matrix, where each column is a key point
in the Hough domain. —> [Theta (Radians);

Radius (same units as X,Y)]

Hough domain is symmetric. This function returns all
points in the R > 0 half of the plane, Theta is allowed
to range from -pi to pi.

X and Y must be row vectors of equal length representing
cartesian points. R and theta will be those points where
Hough curves intersect near other intersections.

Possibly colinear points should be located close to each
other in X and Y indices (Last is adj to the first) in
the indexing of X and Y. Helpful to sample ctr clockwise
or clockwise.

RTol, ThetaTol optional parameters; define how close an
intersection must be to other intersections in order to
be included. Default RTol is 5, Default ThetaTol is
5*pi/180 radians (5 degrees).

MinRad is an optional parameter; intersections in Hough
domain with R < MinRad will not be included. Default
value is zero.

if exist('MinRad') == 0
MinRad = 0;

end

% assign default 'MinRad' value
% same units as X and Y

if exist('RTol') ==
tol = 5;

end

0 % assign default 'RTol' value
% same units as X and Y

if exist('ThetaTol') == 0
tol = 5*pi/180;

end

N = length(X);

index = [N-1,N,1:N,1,2];

PointsCount = 0;
Points = [0;0];

% assign default 'ThetaTol' value
% radians

% X and Y must be equal lengths

% used later to make first and
% last indices neighbors.

% Initial values

for c = 1:N

% For each X,Y data point, find the Theta,R point where it
% intersects its left two and right two neighbors. If the
% two intersections on the left are close to one another
% (within tolerance) then include them both. If the two
% intersections on the right are close to one another (within
% tolerance) then include them both. For 1st data point,

left neighbors are the last two points. For last data %
% point, the first two indices are its right neighbors.

% Find the theta values of the intersections

75

L2Th = atan2(X(index(c))-X(c),Y(c)-Y(index(c)));
LITh = atan2(X(index(c+1))-X(c),Y(c)-Y(index(c+1)))
RITh = atan2(X(index(c+3))-X(c),Y(c)-Y(index(c+3)))
R2Th = atan2(X(index(c+4))-X(c),Y(c)-Y(index(c+4)))

% If the points are colinear, then LITh should approximately
% equal L2Th and R2Th should approximately equal RITh. Also,
% Left theta's should be approximately pi radians away from
% Right theta's. Check to see if this is true.

Theta_check = 0;
R_check = 0;
if sqrt((L2Th - LlTh)Ä2) < ThetaTol

if sqrt((R2Th - RITh)^2) < ThetaTol
if sqrt((sqrt((L2Th - R2Th)~2)

Theta_check = 1;
end

end
end

% Only compute R values if thetas were in the same neighborhood.

if Theta_check == 1

pi)Ä2) < ThetaTol

L2R = X(c)*cos(L2Th) +
L1R = X(c)*cos(LlTh) +
R2R = X(c)*cos(R2Th) +
R1R = X(c)*cos(R'lTh) +

Y(c)*sin(L2Th)
Y(c)*sin(LlTh)
Y(c)*sin(R2Th)
Y(c)*sin(RlTh)

% Should have approximately equal R values on the left and
% approximately equal on the right. Left R values should be
% approximately -1 * Right R values.

if sqrt((L2R - L1R)A2) < RTol
if sqrt((R2R - R1R)^2) < RTol

if sqrt(((-1*L2R) - R2R)~2) <
R_check = 1;

end
end

end
end

if Theta_check == 1
if R_check == 1

PointsCount = PointsCount + 4;
Points(l,PointsCount-3) = L2Th
Points(2,PointsCount-3) = L2R;
Points(l,PointsCount-2) = LITh
Points(2,PointsCount-2) = L1R;
Points(l,PointsCount-l) = RITh
Points(2,PointsCount-1) = R1R;
Points(1,PointsCount) = R2Th
Points(2,PointsCount) = R2R;

end
end

RTol

end

% Hough domain is symmetric. We deal only w/ -pi < theta < pi
% and R > 0. Points with R < 0 must be shifted.

% all points w/ R<0 must be shifted to upper half of plane
% and shifted by pi radians

for c = l:size(Points,2) % for each point

76

if Points(2,c) < 0
if Points(l,c) < 0

Points(l,c) = Points(l,c) + pi;
Points(2,c) = Points(2,c)*(-l);

else
Points(l,c) = Points(l,c) - pi;
Points(2,c) = Points(2,c)*(-1);

end
end

end

if R < 0
% if Theta < 0

% Add pi to theta
% Mult R by -1

% Theta >= 0
% Subtract pi from theta
% Mult R by -1

% Lastly, ignore any points with R < MinRad

for c = 1:size(Points,2)
if Points(2,c) < MinRad

Points(:,c) = [NaN;NaN];
end

end

% set points w/ R < MinRad
% equal to NaN

includes = find(Points(1,:));
Points = Points(:,includes);

% Throw out all the NaN's

77

78

APPENDIX B. NNCLUST.M

function exemplars = nnclust(X_in,Y_in,range,p,alpha,toi)

%NNCLUST Function to find an unspecified # of clusters in
% 2 Dimensions. For thesis.
%
% E = nnclust(X,Y,range,p) returns an 2 x n matrix, where
% n is the # of clusters found, and each row is an exemplar
% vector representing the approximate center of the cluster.
%
% X & Y are row vectors of equal length, and each X,Y
% pair is a data point to be analyzed. Required.
%
% range = [Xmin,Xmax,Ymin,Ymax] is the range over which data
% should be expected to appear. Default is max & min values.
%
% p is the number of neurons to use, should be approximately
% 10 times the number of clusters expected. Default = 30.
%
% alpha is learning rate, a vector the same length as X and Y.
% default is 0.5
%
% tol is an optional parameter between 0 and 1 specifying how
% similar vectors should be before they are combined into a
% single vector. 1 is identical, 0 is orthogonal. Default
% value is 0.999 (Dot-product similarity)

rand('seed1,sum(100*clock)); % Sets new value for rand seed each time

% DEFINITION OF DEFAULT VALUES FOR PARAMETERS

if exist('range') == 0
range = [min(X_in),max(X_in),min(Y_in),max(Y_in)];

end

if exist('p') == 0
p = 30;

end

if exist('alpha') == 0
alpha = 0 .5*ones (size(X_in)) ,-

end

if exist('tol') == 0
tol = 0.999;

end

% NORMALIZATION PROCESS — First, restrict analysis to the unit square

X_norm = max({-l*range(l),range(2)]);
Y_norm = max([-l*range(3),range(4)]);

X = X_in/X_norm; % -1<X<1
Y = Y_in/Y_norm; % -1<Y<1

Nsq =2; % Max length of any vector is sqrt(2).

% Now add a third dimension (unit sphere) so each input has length 1

Input = [X;
Y;
sqrt(Nsq - (X.~2 + Y.A2))]'/sqrt(Nsq);

79

% WEIGHT INITIALIZATION

Xr = ((range(2)-range(1))*rand(l,p)+range(1))/X_norm;
Yr = ((range(4)-range(3)) *rand(l,p)+range(3))/Y_norm;

% Weights must also be on unit sphere, over same range as data.

W = [Xr;
Yr;
sqrt(Nsq - (Xr.A2 + Yr."2))]/sqrt(Nsq);

% W is now a 3 x p matrix, each column is a random vector uniformly
% distributed over the same portion of the unit sphere as the
% data to be clustered.

consecutive =0; % initial values
convergence = 0;
presentations = 0;

while convergence == 0

Ticker = zeros(1,size(W,2)); % initial value

for i = 1:length(X)
S = Input(i,:)*W;
[useless,c] = max(S);

% c is the neuron that won.
% If there was a tie, the vector with the
% lowest index won.

Ticker(c) = Ticker(c) + 1;

% UPDATE WEIGHTS (Must retain normalization, so need to adjust
% the third dimension

W(:,c) =W(:,c) + alpha(i)*(Input(i,:)' -W(:,c));
W(:,c) = W(:,c)/sqrt(W(l,c)A2 + W(2,c)A2 + W(3,c)A2);

end % end for loop

% DELETE UNUSED NEURONS (WEIGHTS)

[useless,keepers] = find(Ticker>0);
possibles = W(:»keepers);
Ticker = Ticker(keepers);
delete_counter = size(W,2)-size(possibles,2) ;

% COMBINE SIMILAR VECTORS INTO ONE AND CREATE A NEW RANDOM WEIGHT
combine_counter = 0;
for i = 1:size(possibles,2)-1

[Y,sim] = max(diag(possibles'*possibles,i));
if Y > tol

combine_counter = combine_counter + 1;
tempi = Ticker(sim)*possibles(: ,sim) ;
temp2 = Ticker(sim+i)*possibles(:,sim+i) ;
temp3 = Ticker(sim)+Ticker(sim+i);
possibles(:,sim) = (tempi + temp2)/temp3;
xnew = ((range(2)-range(l))*rand(l,1)+range(l))/X_norm;
ynew = ((range(4)-range(3))*rand(1,1)+range(3))/Y_norm;
possibles(:,sim+i) = [xnew;

ynew;
sqrt(Nsq-(xnewA2 + ynewA2))]/sqrt(Nsq);

end % end if statement
end % end for loop

80

% Check to see if we've converged yet...

presentations = presentations + sum(Ticker) ;
if presentations > 200

presentations
if (delete_counter + combine_counter == 0)

% Minimum 200

% If no weights were
% deleted or
% combined above
% for two epochs
% in a row assume
% convergence.

consecutive = consecutive + 1;
if consecutive > 1

convergence = 1;
end % end if statement

else
consecutive = 0;

end % end if/else
end % end if statement

W = possibles; % Go back thru with any surviving weights
end % end while statement

% Discard small clusters (less than # of data points / # of weights).

[useless, keepers] = find(Ticker> (length (X_in) /p)) ;

% Put output back in the 2-D form that the input was in.

exemplars = [W(l, keepers)*X_norm;
W(2,keepers)*Y_norm]*sqrt(Nsg);

81

82

APPENDIX C. FINDWALL.M

function walls = findwall(FileName)

%FINDWALL walls = findwall('filename.dat')
%
% Specific application for thesis. 'filename.dat' is the
% name of a file containing range findings from a NOMAD
% SCOUT robot. Format should be a 'dat' file (ASCII).
% data must be arranged in 5 columns as shown below, and
% number of rows should be an integer multiple of 16.
% Function assumes sonar hardware configuration is NOMAD
% default: i.e. 16 sonars equally spaced about circum-
% ference, range findings taken counter clockwise.
%
% Finds range and bearing to the closest point
% of any significant walls near the robot, in robot
% coordinates.
%
% Output is a 2 x ? matrix; each column represents a
% Theta,R pair indicating the presence of a wall. The top
% row is Theta in degrees, the bottom row is R in inches.
%
% For code simplicity sake, this version requires the file
% name extension to be EXACTLY ".dat".
%
% DATA FORMAT: Col 1 = X-position of robot times 10
% Col 2 = Y-position of robot times 10
% Col 3 = Steering Angle in degrees times 10
% Col 4 = Turret Angle in degrees times 10
% Col 5 = range return of ith sonar in inches
%

eval(['load ',FileName]); % Load Data
input = eval(FileName(l:size(FileName,2)-4));% Name it 'input'

% Useful Constants-

RobotRadius = 7.185; % inches — Nomad Scout
shift = 0 :22.5:(360-22.5); % angle of ea sonar relative to T-angle
HTolR =6; % Tol for Hough reduction - radius (in)
HTolTh = 8*pi/180; % Tol for Hough reduction - Theta (rad)
p = 30; % # of neurons to start with in NN
NNTol = 0.99; % Similarity tolerance for NN
ConstLR =0.05; % Learning Rate for NN (if constant)
max_trusted = 110; % Largest sonar return to be trusted
min_trusted =17; % Smallest sonar return to be trusted

% SORT & CONDITION THE INPUTS-

% We don't need steering angle AND turret angle if we're working with
% a scout; Col # 4 is meaningless. So we'll turn column 4 into the
% ACTUAL angle of each range finding relative to turret angle.
% 16 Sonars are equally spaced 22.5 degrees apart, or as defined in
% the variable 'shift' above. NOTE: if the number of rows in the
% input file is not an integer multiple of the number of sonars
% defined in 'shift' (default 16), an error message will result.

for c = 1:size(input,1)/length(shift)
input((16*(c-l)+l):16*c,4)=input((16*(c-l)+l):16*c,3)/10+shift';

end

% Now, go back through the column 3 we created, and make sure all
% angles are between 0 and 3 60.

83

for c = 1:size(input,1)
if input(c,4)<0

input(c,4) = input(c,4)+360;
elseif input(c,4)>= 360

input(c,4) = input(c,4)-3 60;
end

end

% Finally, sort the entire set of range findings counter-clockwise

[useless_vector,I] = sort (input (:, 4)) ,-
input = input(I,:);
clear useless_vector

% Ignore range findings too small or too big

in = input;

for row = l:size(in,l)
if in(row,5) > max_trusted

in(row,5) = NaN;
elseif in(row,5) < min_trusted

in(row,5) = NaN;
end

end

I = find-(in(:,5)) ;
in = in(I, :) ;

% GET X,Y LOCATIONS OF ALL SONAR RETURNS TRUSTED

XY = zeros(2,size(in,1));
for c = l:size(in,l)

Xrobot = in(c,l)/10;
Yrobot = in(c,2)/10;
range = RobotRadius + in(c,5);
angle = in(c,4)*pi/180;
X = Xrobot + range*cos(angle) ;
Y = Yrobot + range*sin(angle);
XY(:,c) = [X;YJ;

end

% TAKE REDUCED HOUGH TRANSFORM OF X,Y PAIRS-

cl_rad = houghred(XY(l, :) ,XY(2, :) ,HTolR, HTo.lTh,RobotRadius+min_trusted) ;
cl_deg = [cl_rad(l,:)*180/pi;

cl_rad(2,:)] ;

[Y,I] = sort(rand(l,size(cl_deg,2))); % Put the points in rand
cl = cl_deg(:,I); % order for presentation

% FIND THE CLUSTERS IN HOUGH DOMAIN-

range = [-180,180,RobotRadius+min_trusted,max_trusted];
alphal = ConstLR*ones(size(cl,2)) ;
walls = nnclust(cl(l,:),cl(2,:),range,p,alphal,NNTol);

84

APPENDIX D. GATHER.C

*
* PROGRAM: gather.c
*
* PURPOSE: To collect sonar data for later off-line processing
* to locate walls. Modified for Scout

/*** Include Files ***/

inelüde "Nc1ient.h"
#include <stdio.h>
♦include <stdlib.h>
tinelüde <math.h>

/*** Conversion MACROS courtesy of Nomadic Inc ***/

#define RIGHT(trans, steer) (trans + (int)((float)steer*368.61/3600.0))
tdefine LEFT(trans, steer) (trans - (int)((float)steer*368.61/3600.0))

#define scout_vm(trans, steer) vm(RIGHT(trans, steer), LEFT(trans,
steer), 0)
#define scout_pr(trans, steer) pr(RIGHT(trans, steer), LEFT(trans,
steer), 0)

/*** Function Prototypes ***/

void GetSensorData(void);

/*** Global Variables ***/

long SonarRange[16]; /* Array of sonar readings (inches) */
long IRRange[16]; /* Array of infrared readings (no units) */
long robot_config[4]; /* Array - robot configuration */

/*** Main Program ***/

main (unsigned int arge, char** argv)
{

int i, j, index;
int order[16] ;
FILE *fp;

/* Connect to Nserver. The parameter passed must always be 1. */
SERV_TCP_PORT = 7020;
connect_robot(1, MODEL_SCOUT, "scoutl.ece.nps.navy.mil", 4001);

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server. This
function tells the robot to give us everything. */

init_mask();

/* Configure timeout (given in seconds) . This is how long the robot
will keep moving if you become disconnected. Set this low if there
are walls nearby. */

conf_tm(l);

85

/* Sonar setup. As you look at robot from top, Sonar 0 is the one
in the direction the robot is facing. Then they number counter
clockwise up to 15. */

for (i = 0; i < 16; i++)
order[i] = i;

conf_sn(15,order) ;

fp = fopen("range.dat", "w"),-

/* Guts of the program. To make robot rotate 7.5 degrees, the
command is scout_vm(0,75). The direction will be counter
clockwise as you view the robot from the top. Need to
GetSensorData, rotate, GetSensorData again, rotate again,
GetSensorData a third time, then return to original state.*/

GetSensorData();

for (j=0; j<16; j++)
fprintf(fp, "%8d %8d %8d %8d %8d \n",

robot_config[0],robot_config[l],robot_config[2],
robot_config[3],SonarRange[j]) ;

scout_vm(0,75);

sleep(5);

GetSensorData();

for (j=0; j<16; j++)
fprintf(fp, "%8d %8d %8d %8d %8d \n",

robot_config[0],robot_config[l],robot_config[2],
robot_config[3],SonarRange[j]) ;

scout_vm(0,75);

sleep(5);

GetSensorData();

for (j=0; j<16; j++)
fprintf(fp, "%8d %8d %8d %8d %8d \n",

robot_config[0],robot_config[l],robot_config[2],
robot_config[3] , SonarRange [j]) ,-

scout_vm(0,-150) ;

fclose(fp);

/* Disconnect. */
disconnect_robot(1) ;

/* GetSensorData(). Read in sensor data and load into arrays. */
void GetSensorData (void)
{

int i ;

/* Read all sensors and load data into State array. */

86

gs () ;

/* Read State array data and put readings into individual arrays. */
for (i =0; i < 16; i++)

/* Sonar ranges are given in inches, and can be between 6 and
255, inclusive. */

SonarRange[i] = State[17+i];

/* IR readings are between 0 and 15, inclusive. This value is
inversely proportional to the light reflected by the detected
object, and is thus proportional to the distance of the
object. Due to the many environmental variables effecting the
reflectance of infrared light, distances cannot be accurately
ascribed to the IR readings. */

IRRange[i] = State[1+i];
}

for (i =0; i < 4; i++)
robot_config[i] = State[34+i];

87

88

REFERENCES

1. "Chernobyl DOE, NASA, and Industry Team Up to Create Damaged Reactor Model,"
Nuclear Waste News, April 1998.

2. Baker, S. and Matlack, C, "Chernobyl: If You Can Make It Here...," Business Week,
March 30,1998.

3. Lange, L., "Mars mission spotlights robotics' potential, but Japan owns the market -
U.S. plays catch-up as robots prove their mettle," Electronic Engineering Times,
February 23,1998 (correction appended March 16,1998).

4. Hernandez,G-, An Integrated GPS/INS Navigation System for Small A UVs Using An
Asynchronous Kaiman Filter, Master's Thesis, Naval Postgraduate School, Monterey,
CA, June 1998.

5. Hillmeyer, P., Implementation of a Multiple Robot Frontier-Based Explorations System
as a Testbed for Battlefield Reconnaissance Support, Master's Thesis, Naval
Postgraduate School, Monterey, CA, June 1998.

6. Albayrak, O., Line and Circle Formation of Distributed Autonomous Mobile Robots
with Limited Sensor Range, Master's Thesis, Naval Postgraduate School, Monterey,
CA, March 1996.

7. Mays, E. andReid, F., Shepherd Rotary Vehicle: Multivariate Motion Control and
Planning, Master's Thesis, Naval Postgraduate School, Monterey, CA, September
1997.

8. "Robotic Digest - Defense Advanced Research Projects Agency," Military Robotics
August 22,1997.

9. H. R. Everett, Sensors for Mobile Robots: Theory and Application, A. K. Peters, Ltd.,
Wellesley, MA, 1995, pp. 1-65.

10. Scout Beta 1.1, Nomadic Technologies, Inc., Mountain View, CA, 1998.

11. The Nomad Scout, Nomadic Technologies, Inc., Mountain View, CA, July 1997.

12. Nomadic Technologies, Inc., Webpage, http://www.robots.com

13. Nomad 200 Hardware Manual, Nomadic Technologies, Inc., Mountain View, CA,
February 1997.

14. Hough, P. V. C, "A Method and Means for Recognizing Complex Patterns," U. S.
Patent No. 3,069,654,1962.

15. Hagan, M., Demuth, H.,and Beale, M. Neural Network Design, PWS Publishing,
Boston, MA, 1996.

89

16. Lin, C. and Lee, C. Neural Fuzzy Systems, A Neuro-Fuzzy Synergism to Intelligent
Systems, Prentice-Hall, Upper Saddle River, 1996.

17. Duda, R. O. and Hart, P. E. "Use of the Hough transformation to detect lines and curves
in pictures," Communications of the ACM, 15(1): 11-15,1972.

18. Choy, C, Ser, P., and Siu, W., "Peak detection in Hough transform via self-organizing
learning," Proceedings of the IEEE International Symposium on Circuits and Systems,
pages 139-142, Seattle, WA, May 1995.

19. Forsberg, J., Larsson, U., Ahman, P., and Wernersson, A., "The Hough transform
inside the feedback loop of a mobile robot," Proceedings of the IEEE International
Conference on Robotics and Automation, pages 791-798, Atlanta, GA, May 1993.

20. Forsberg, J., Larsson, U., and Wernersson, A., "Mobile robot navigation using the
range-weighted Hough transform," IEEE Robotics and Automation Magazine,
2(1): 18-26, March 1995.

21. Larsson, U, Forsberg, J., and Wernersson, A., "Mobile robot localization: Integrating
measurements from a time-of-flight laser," IEEE Transactions on Industrial
Electronics, 43(3):422-431, June 1996.

22. Yuen, K., and Chan, W., "A solution to the generalized Duda and Hart Problem using
Fourier parameterization," Proceedings of the IEEE International Conference on
Speech, Image Processing, and Neural Networks, pages 441-444, Hong Kong, April
1994.

23. Chan C. K., and Sandier, M. B., "A complete shape recognition system using the Hough
transform and neural network." Proceedings of the Eleventh IEEE International
Conference on Pattern Recognition, (Conference B: Pattern Recognition Methodology
and Systems) pages 21-24, The Hague, Netherlands, September 1992.

24. Latt, K., Sonar-Based Localization of Mobile Robots Using the Hough Transform,
Master's Thesis, Naval Postgraduate School, Monterey, CA, March 1997.

25. Yamauchi, B., Schultz, A., and Adams, W., Integrating Exploration and Localization
for Mobile Robots, Report AIC 97-021 Navy Center for Applied Research in Artificial
Intelligence, Naval Research Laboratory, Washington D. C, 1997.

26. Yamauchi, B., Schultz, A., and Adams, W., "Mobile Robot Exploration and Map-
Building with Continuous Localization," Proceedings of the IEEE International
Conference on Robotics and Automation, Lueven, Belguim, May, 1998.

27. Bardash, M. J., "Three dimensional imaging system using laser generated ultrashort x-
ray pulser," U. S. Patent number 5,703,923,1997.

90

28. Wildes, R., Asmuth, J., Hanna, K., Hsu, S., Kolczynski, R, Matey, J., McBride, S.,
"Automated, non-invasive iris recognition system and method," U.S. Patent number
5,572,596.

29. Duda, R. O., and Hart, P. E., Pattern Classification and Scene Analysis, John Wiley and
Sons, New York, NY, 1973.

30. Kohonen, T., Self-Organization and Associative Memory, 3rd ed. Springer-Verlag, New
York, NY, 1989.

31. Dayhoff, J., Neural Network Architectures, An Introduction, Van Nostrand Reinhold
Publishing, New York, NY, 1990.

91

92

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Director, Training and Education 1
MCCDC, Code C46
1019 Elliot Rd.
Quantico, VA 22134-5027

4. Director, Marine Corps Research Center.
MCCDC, Code C40RC
2040 Broadway Street
Quantico, VA 22134-5107

5. Director, Studies and Analysis Division...
MCCDC, Code C45
300 Russell Road
Quantico, VA 22134-5130

6. Marine Corps Representative.
Naval Postgraduate School
Code 037 Bldg. 234 HA-220
699 Dyer Road
Monterey, CA 93943

7. Marine Corps Tactical Systems Support Activity.
Technical Advisory Branch
Atta: Maj J. C. Cummiskey
Camp Pendleton, CA 92055-5080

Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

93

Professor Xiaoping Yun, Code EC/YX
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

10. Professor Robert G. Hutchins, Code EC/HU
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

11. Captain Jonathan S. Glennon, USMC
2010 Lakeway Drive
Holland, MI 49423

94

